Home
Class 12
MATHS
If f(x)=log[(1+x)/(1-x)], then prove tha...

If `f(x)=log[(1+x)/(1-x)],` then prove that `f[(2x)/(1+x^2)]=2f(x)dot`

Text Solution

Verified by Experts

The correct Answer is:
B

`f((2x)/(1+x^2))=ln((1-(2x)/(1+x^2))/(1+(2x)/(1+x^2)))`
`ln.(((x-1)^2)/((x+1)^2))=2ln|(x-1)/(x+1)|`
`=2ln((1-x)/(1+x))=2f(x)`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos
  • JEE MAIN REVISION TEST - 1 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 12

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(x)/(x-1) , then prove that (f(a))/(f(a+1))=f(a^(2))

If f(x)=log_e((1-x)/(1+x)); prove that f(a)+f(b)=f((a+b)/(1+a b))

If f is a real function defined by f(x)=(x-1)/(x+1) , then prove that f(2x)=(3f(x)+1)/(f(x)+3)

Let (x) is a real function, defines as f(x) =(x-1)/(x+1), then prove that f(2x)=(3f(x)+1)/(f(x)+3).

If f(x) = (1 + x)/(1 - x) Prove that ((f(x) f(x^(2)))/(1 + [f(x)]^(2))) = (1)/(2)

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=x+1/x , prove that [f(x)]^3=f(x^3)+3f(1/x)dot .

If f(x)=log((1+x)/(1-x))a n dt h e nf((2x)/(1+x^2)) is equal to {f(x)}^2 (b) {f(x)}^3 (c) 2 f(x) (d) 3f(x)

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x)=(1-x^(2))/(1+x^(2)) , then prove that: f(tan theta)=cos 2theta