Home
Class 12
MATHS
If int e^(sec x)(sec x tan x f(x)+(sec x...

If `int e^(sec x)(sec x tan x f(x)+(sec x tan x + sec^(2) x))dx = e^(sec x)f(x) + C`, then a possible choice of f(x) is

A

`sec x + x tan x - (1)/(2)`

B

`x sec x + tan x + (1)/(2)`

C

`sec x - tan x - (1)/(2)`

D

`sec x + tan x + (1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find a possible choice of \( f(x) \) given the equation: \[ \int e^{\sec x} \left( \sec x \tan x f(x) + \sec x \tan x + \sec^2 x \right) dx = e^{\sec x} f(x) + C \] ### Step-by-Step Solution: 1. **Differentiate Both Sides with Respect to \( x \)**: We start by differentiating both sides of the equation with respect to \( x \). This is based on the principle that differentiation and integration are inverse operations. \[ \frac{d}{dx} \left( \int e^{\sec x} \left( \sec x \tan x f(x) + \sec x \tan x + \sec^2 x \right) dx \right) = \frac{d}{dx} \left( e^{\sec x} f(x) + C \right) \] The left-hand side simplifies to: \[ e^{\sec x} \left( \sec x \tan x f(x) + \sec x \tan x + \sec^2 x \right) \] The right-hand side uses the product rule: \[ \frac{d}{dx} \left( e^{\sec x} f(x) \right) = e^{\sec x} \sec x \tan x f(x) + e^{\sec x} f'(x) \] Thus, we have: \[ e^{\sec x} \left( \sec x \tan x f(x) + \sec x \tan x + \sec^2 x \right) = e^{\sec x} \sec x \tan x f(x) + e^{\sec x} f'(x) \] 2. **Cancel \( e^{\sec x} \)**: Since \( e^{\sec x} \) is never zero, we can safely divide both sides by \( e^{\sec x} \): \[ \sec x \tan x f(x) + \sec x \tan x + \sec^2 x = \sec x \tan x f(x) + f'(x) \] 3. **Rearranging the Equation**: We can rearrange the equation to isolate \( f'(x) \): \[ \sec x \tan x + \sec^2 x = f'(x) \] 4. **Integrate Both Sides**: To find \( f(x) \), we integrate both sides with respect to \( x \): \[ f(x) = \int \left( \sec x \tan x + \sec^2 x \right) dx \] The integral of \( \sec x \tan x \) is \( \sec x \), and the integral of \( \sec^2 x \) is \( \tan x \): \[ f(x) = \sec x + \tan x + C \] ### Final Answer: Thus, a possible choice of \( f(x) \) is: \[ f(x) = \sec x + \tan x + C \]

To solve the given problem, we need to find a possible choice of \( f(x) \) given the equation: \[ \int e^{\sec x} \left( \sec x \tan x f(x) + \sec x \tan x + \sec^2 x \right) dx = e^{\sec x} f(x) + C \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST 11 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION - 2)|4 Videos
  • JEE MAIN REVISION TEST -17 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST 5 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

int(secx- tan x)/(sec x+ tan x) dx

int secx. log (sec x+ tan x ) dx

int sec x ln(sec x+tan x)dx=

int sec x tan x sqrt(sec^(2) x+1)dx

int e^x sec e^x dx

solve int e^(tan x)sec^(2)xdx

int sec x tan x sqrt(tan^(2) x-4) dx

int " x sec"^(2) " x dx "

int " x sec"^(2) " x dx "

int1/(sec x + cosec x) dx