Home
Class 12
MATHS
The area (in sq units) of the region ...

The area (in sq units) of the region
`A={(x,y):(y^(2))/(2) le x le y+4}` is

A

18

B

`(53)/(3)`

C

16

D

30

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the region defined by the inequalities \( A = \{(x,y) : \frac{y^2}{2} \leq x \leq y + 4\} \), we will follow these steps: ### Step 1: Identify the curves The inequalities represent two curves: 1. The parabola given by \( y^2 = 2x \). 2. The line given by \( x = y + 4 \). ### Step 2: Find the intersection points To find the area between the curves, we need to determine the points where they intersect. We set the equations equal to each other. From the parabola: \[ y^2 = 2x \] From the line: \[ x = y + 4 \] Substituting the expression for \( x \) from the line into the parabola: \[ y^2 = 2(y + 4) \] \[ y^2 = 2y + 8 \] Rearranging gives: \[ y^2 - 2y - 8 = 0 \] ### Step 3: Solve the quadratic equation Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = -2, c = -8 \): \[ y = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-8)}}{2 \cdot 1} \] \[ y = \frac{2 \pm \sqrt{4 + 32}}{2} \] \[ y = \frac{2 \pm \sqrt{36}}{2} \] \[ y = \frac{2 \pm 6}{2} \] Thus, we have: \[ y = 4 \quad \text{and} \quad y = -2 \] ### Step 4: Find corresponding x-values Now, we find the corresponding x-values for these y-values using \( x = y + 4 \): 1. For \( y = 4 \): \[ x = 4 + 4 = 8 \] 2. For \( y = -2 \): \[ x = -2 + 4 = 2 \] The intersection points are \( (8, 4) \) and \( (2, -2) \). ### Step 5: Set up the integral for the area The area \( A \) between the curves from \( y = -2 \) to \( y = 4 \) can be expressed as: \[ A = \int_{-2}^{4} [(y + 4) - \left(\frac{y^2}{2}\right)] \, dy \] ### Step 6: Evaluate the integral Now we calculate the integral: \[ A = \int_{-2}^{4} \left( y + 4 - \frac{y^2}{2} \right) \, dy \] Calculating the integral: \[ = \int_{-2}^{4} \left( y + 4 - \frac{y^2}{2} \right) \, dy = \left[ \frac{y^2}{2} + 4y - \frac{y^3}{6} \right]_{-2}^{4} \] ### Step 7: Substitute the limits Calculating at the upper limit \( y = 4 \): \[ = \frac{4^2}{2} + 4(4) - \frac{4^3}{6} = \frac{16}{2} + 16 - \frac{64}{6} = 8 + 16 - \frac{32}{3} = 24 - \frac{32}{3} = \frac{72}{3} - \frac{32}{3} = \frac{40}{3} \] Calculating at the lower limit \( y = -2 \): \[ = \frac{(-2)^2}{2} + 4(-2) - \frac{(-2)^3}{6} = \frac{4}{2} - 8 + \frac{8}{6} = 2 - 8 + \frac{4}{3} = -6 + \frac{4}{3} = -\frac{18}{3} + \frac{4}{3} = -\frac{14}{3} \] ### Step 8: Final area calculation Now, we find the area: \[ A = \left( \frac{40}{3} - \left(-\frac{14}{3}\right) \right) = \frac{40}{3} + \frac{14}{3} = \frac{54}{3} = 18 \] ### Conclusion The area of the region \( A \) is \( 18 \) square units. ---

To find the area of the region defined by the inequalities \( A = \{(x,y) : \frac{y^2}{2} \leq x \leq y + 4\} \), we will follow these steps: ### Step 1: Identify the curves The inequalities represent two curves: 1. The parabola given by \( y^2 = 2x \). 2. The line given by \( x = y + 4 \). ### Step 2: Find the intersection points ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST 11 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION - 2)|4 Videos
  • JEE MAIN REVISION TEST -17 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST 5 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

The area (in sq units) of the region A={(x,y): x^(2) le y le x +2} is

The area (in sq units) of the region A={(x,y): x^(2) le y le x +2} is

The area (in sq. units) of the region {(x,y):y^(2) le 2x and x^(2)+y^(2) le 4x , x ge 0, y le 0}, is

The area (in sq. units) of the region {(x,y):y^(2) le 2x and x^(2)+y^(2) le 4x , x ge 0, y le 0}, is

The area (in sq units) of the region described by {(x,y):y^(2)le2x and yge4x-1} is

The area (in sq. units) of the region A={(x,y)in R xx R |0 le x le 3, 0 le y le 4, y le x^(2) + 3x} is :

The area (in sq units) of the region {(x, y) : y^2 gt= 2x and x^2 + y^2 lt= 4x, x gt= 0, y gt= 0} is

The area (in sqaure units) of the region {(x,y):x ge 0, x + y le 3, x^(2) le 4y and y le 1 + sqrt(x)} is

If the area (in sq. units) of the region {(x,y): y^(2) lt= 4x,x+y lt=1,xgt=0,ygt=0} is asqrt2+b , then a-b is equal to :

Find the area of the region {(x,y): x^(2)+y^(2) le 1 le x + y}