Home
Class 12
MATHS
If cos x (dy)/(dx)-y sin x = 6x, (0 lt x...

If cos `x (dy)/(dx)-y sin x = 6x, (0 lt x lt (pi)/(2))` and `y((pi)/(3))=0`, then `y((pi)/(6))` is equal to :-

A

(a) `- (pi^(2))/(4 sqrt(3))`

B

(b) `- (pi^(2))/(2)`

C

(c) `- (pi^(2))/(2sqrt(3))`

D

(d) `(pi^(2))/(2 sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation given in the problem, we will follow these steps: ### Step 1: Rewrite the differential equation The given differential equation is: \[ \cos x \frac{dy}{dx} - y \sin x = 6x \] We can divide the entire equation by \(\cos x\) to simplify it: \[ \frac{dy}{dx} - y \tan x = 6x \sec x \] ### Step 2: Identify \(p\) and \(q\) In the standard form \(\frac{dy}{dx} + p y = q\), we identify: - \(p = -\tan x\) - \(q = 6x \sec x\) ### Step 3: Find the integrating factor The integrating factor \(I\) is given by: \[ I = e^{\int p \, dx} = e^{\int -\tan x \, dx} \] The integral of \(-\tan x\) is: \[ -\ln |\sec x| = \ln |\cos x| \] Thus, the integrating factor is: \[ I = e^{\ln |\cos x|} = \cos x \] ### Step 4: Multiply the entire equation by the integrating factor Multiplying the differential equation by \(\cos x\): \[ \cos x \frac{dy}{dx} - y \sin x = 6x \] This simplifies to: \[ \frac{d}{dx}(y \cos x) = 6x \] ### Step 5: Integrate both sides Integrating both sides with respect to \(x\): \[ \int \frac{d}{dx}(y \cos x) \, dx = \int 6x \, dx \] This gives: \[ y \cos x = 3x^2 + C \] where \(C\) is the constant of integration. ### Step 6: Solve for \(y\) Rearranging gives: \[ y = \frac{3x^2 + C}{\cos x} \] ### Step 7: Use the initial condition to find \(C\) We are given the condition \(y\left(\frac{\pi}{3}\right) = 0\): \[ 0 = \frac{3\left(\frac{\pi}{3}\right)^2 + C}{\cos\left(\frac{\pi}{3}\right)} \] Since \(\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}\): \[ 0 = 3\left(\frac{\pi^2}{9}\right) + C \implies C = -\frac{\pi^2}{3} \] ### Step 8: Substitute \(C\) back into the equation for \(y\) Substituting \(C\) back, we have: \[ y = \frac{3x^2 - \frac{\pi^2}{3}}{\cos x} \] ### Step 9: Find \(y\left(\frac{\pi}{6}\right)\) Now we need to find \(y\left(\frac{\pi}{6}\right)\): \[ y\left(\frac{\pi}{6}\right) = \frac{3\left(\frac{\pi}{6}\right)^2 - \frac{\pi^2}{3}}{\cos\left(\frac{\pi}{6}\right)} \] Calculating: \[ y\left(\frac{\pi}{6}\right) = \frac{3\left(\frac{\pi^2}{36}\right) - \frac{\pi^2}{3}}{\frac{\sqrt{3}}{2}} = \frac{\frac{\pi^2}{12} - \frac{12\pi^2}{36}}{\frac{\sqrt{3}}{2}} = \frac{\frac{\pi^2}{12} - \frac{\pi^2}{3}}{\frac{\sqrt{3}}{2}} = \frac{\frac{\pi^2}{12} - \frac{4\pi^2}{12}}{\frac{\sqrt{3}}{2}} = \frac{-\frac{3\pi^2}{12}}{\frac{\sqrt{3}}{2}} = \frac{-\frac{\pi^2}{4}}{\frac{\sqrt{3}}{2}} = -\frac{\pi^2}{2\sqrt{3}} \] ### Final Answer Thus, the value of \(y\left(\frac{\pi}{6}\right)\) is: \[ y\left(\frac{\pi}{6}\right) = -\frac{\pi^2}{2\sqrt{3}} \]

To solve the differential equation given in the problem, we will follow these steps: ### Step 1: Rewrite the differential equation The given differential equation is: \[ \cos x \frac{dy}{dx} - y \sin x = 6x \] We can divide the entire equation by \(\cos x\) to simplify it: ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST 11 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION - 2)|4 Videos
  • JEE MAIN REVISION TEST -17 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST 5 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

Solve sin 3x = cos 2x. (0 lt x lt 2pi).

Let y=g(x) be the solution of the differential equation sinx ((dy)/(dx))+y cos x=4x, x in (0,pi) If y(pi/2)=0 , then y(pi/6) is equal to

If A={x:(pi)/(6) lt x lt (pi)/(3)} and f(x) =cosx-x(1+x), then f(A) is equal to :

Lt_(x to (pi)/(2))(2x-pi)/(cos x) is equal to

Suppose cos^(2)y.(dy)/(dx)=sin(x+y)+sin(x-y), |x| le (pi)/(2) and |y|le(pi)/(2). If y((pi)/(3))=-(pi)/(2), then y((pi)/(2)) is

Suppose y is a function of x that satisfies (dy)/(dx)=(sqrt(1-y^(2)))/(x^(2)) and y=0 at x=(2)/(pi) then y((3)/(pi)) is equal to :

If cos x + sin x = a , (- (pi)/(2) lt x lt - (pi)/(4)) , then cos 2 x is equal to

(dy)/(dx) ((1+ cos x)/(y)) =- sin x and f ((pi)/(2)) =-1, then f (0) is:

(dy)/(dx) ((1+ cos x)/(y)) =- sin x and f ((pi)/(2)) =-1, then f (0) is:

If y = y ( x ) is the solution of differential equation sin y (dy ) /(dx ) - cos y = e ^ ( - x ) such that y ( 0 ) = ( pi ) /(2) then y (A) is equal to