Home
Class 12
MATHS
The value of the integral int(0)^(1)xcot...

The value of the integral `int_(0)^(1)xcot^(-1)(1-x^(2)+x^(4))dx` is

Text Solution

Verified by Experts

The correct Answer is:
4

`I = int_(0)^(1) x cot^(-1) (1 - x^(2) + x^(4)) dx`
put `x^(2) = t`, 2xdx = dt
`I = (1)/(2) int_(0)^(1) cot^(-1) (1- t + t^(2)) dt, = (1)/(2) int_(0)^(1) tan^(-1) ((1)/(1 + t(t - 1)))dt`
`= (1)/(2) int_(0)^(1) tan^(-1) ((t - (t - 1))/(1 + t (t - 1))) dt, = (1)/(2) int_(0)^(1) {tan^(-1) t + tan^(-1) (1 - t)}dt`
`:. int_(0)^(1) tan^(-1) t dt = int_(0)^(1) tan^(-1) (1 - t) dt, I = int_(0)^(1) tan^(-1) t dt)`
`= t . tan^(-1) t|_(0)^(1) = int_(0)^(1) (t)/(1 + t^(2)) dt = (pi)/(4) - (1)/(2) ln (1 + t^(2)) |_(0)^(1) = (pi)/(4) - (1)/(2) ln 2`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST 11 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION - 2)|4 Videos
  • JEE MAIN REVISION TEST -17 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST 5 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(1) cot^(-1) (1-x+x^(2))dx , is

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

The value of the integral int_(0)^(1) (1)/((1+x^(2))^(3//2))dx is

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

The value of the integral int_(0)^(a) (1)/(x+sqrt(a^(2)-x^(2)))dx , is

The value of the integral int_(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to

The value of the definite integral int_(0)^(1)(1+e^(-x^(2))) dx is

The maximum value of the integral int_(a-1)^(a+1)(1)/(1+x^(4))dx is attained

If f(x)=cos(tan^(-1)x) , then the value of the integral int_(0)^(1)xf''(x)dx is