Home
Class 12
MATHS
Let hat(alpha) = 3 hat(i)+hat(j) and h...

Let ` hat(alpha) = 3 hat(i)+hat(j)` and `hat(beta)= 2 hat(i)-hat(j)+3hat(k)`. If `vec(beta)=vec(beta)_(1)-vec(beta)_(2)`, where `vec(beta)_(1)` is parallel to `vec(alpha)` and `vec(beta)_(2)` is perpendicular to `vec(alpha)` then `vec(beta)_(1)xx vec(beta)_(2)` is equal to :

A

`- 3 hat(i) + 9 hat(j) + 5 hat(k)`

B

`1/2 ( 3 hat(i)- 9 hat(j) + 5 hat(k))`

C

`1/2 (-3 hat(i) + 9 hat(j) + 5 hat(k))`

D

`3 hat(i)-9 hat(j)- 5 hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the cross product of two vectors, \( \vec{\beta_1} \) and \( \vec{\beta_2} \), where \( \vec{\beta_1} \) is parallel to \( \vec{\alpha} \) and \( \vec{\beta_2} \) is perpendicular to \( \vec{\alpha} \). ### Step-by-step Solution: 1. **Define the vectors**: \[ \vec{\alpha} = 3\hat{i} + \hat{j} \] \[ \vec{\beta} = 2\hat{i} - \hat{j} + 3\hat{k} \] 2. **Express \( \vec{\beta_1} \)**: Since \( \vec{\beta_1} \) is parallel to \( \vec{\alpha} \), we can express it as: \[ \vec{\beta_1} = \lambda \vec{\alpha} = \lambda (3\hat{i} + \hat{j}) = 3\lambda \hat{i} + \lambda \hat{j} \] 3. **Express \( \vec{\beta_2} \)**: Given \( \vec{\beta} = \vec{\beta_1} - \vec{\beta_2} \), we can rearrange this to find \( \vec{\beta_2} \): \[ \vec{\beta_2} = \vec{\beta_1} - \vec{\beta} = (3\lambda \hat{i} + \lambda \hat{j}) - (2\hat{i} - \hat{j} + 3\hat{k}) \] Simplifying this gives: \[ \vec{\beta_2} = (3\lambda - 2)\hat{i} + (\lambda + 1)\hat{j} - 3\hat{k} \] 4. **Condition for perpendicularity**: Since \( \vec{\beta_2} \) is perpendicular to \( \vec{\alpha} \), we have: \[ \vec{\alpha} \cdot \vec{\beta_2} = 0 \] This leads to: \[ (3\hat{i} + \hat{j}) \cdot ((3\lambda - 2)\hat{i} + (\lambda + 1)\hat{j} - 3\hat{k}) = 0 \] Expanding this gives: \[ 3(3\lambda - 2) + 1(\lambda + 1) + 0 = 0 \] Simplifying: \[ 9\lambda - 6 + \lambda + 1 = 0 \implies 10\lambda - 5 = 0 \implies \lambda = \frac{1}{2} \] 5. **Substituting back to find \( \vec{\beta_1} \) and \( \vec{\beta_2} \)**: \[ \vec{\beta_1} = 3\left(\frac{1}{2}\right)\hat{i} + \left(\frac{1}{2}\right)\hat{j} = \frac{3}{2}\hat{i} + \frac{1}{2}\hat{j} \] Now substitute \( \lambda \) into \( \vec{\beta_2} \): \[ \vec{\beta_2} = \left(3\left(\frac{1}{2}\right) - 2\right)\hat{i} + \left(\frac{1}{2} + 1\right)\hat{j} - 3\hat{k} \] Simplifying gives: \[ \vec{\beta_2} = \left(\frac{3}{2} - 2\right)\hat{i} + \left(\frac{3}{2}\right)\hat{j} - 3\hat{k} = -\frac{1}{2}\hat{i} + \frac{3}{2}\hat{j} - 3\hat{k} \] 6. **Calculate the cross product \( \vec{\beta_1} \times \vec{\beta_2} \)**: Using the determinant form: \[ \vec{\beta_1} \times \vec{\beta_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{3}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{3}{2} & -3 \end{vmatrix} \] Expanding this determinant: \[ = \hat{i} \left(\frac{1}{2} \cdot (-3) - 0 \cdot \frac{3}{2}\right) - \hat{j} \left(\frac{3}{2} \cdot (-3) - 0 \cdot -\frac{1}{2}\right) + \hat{k} \left(\frac{3}{2} \cdot \frac{3}{2} - (-\frac{1}{2}) \cdot \frac{1}{2}\right) \] Simplifying gives: \[ = -\frac{3}{2}\hat{i} + \frac{9}{2}\hat{j} + \left(\frac{9}{4} + \frac{1}{4}\right)\hat{k} = -\frac{3}{2}\hat{i} + \frac{9}{2}\hat{j} + \frac{10}{4}\hat{k} \] Thus: \[ = -\frac{3}{2}\hat{i} + \frac{9}{2}\hat{j} + \frac{5}{2}\hat{k} \] ### Final Answer: \[ \vec{\beta_1} \times \vec{\beta_2} = -\frac{3}{2}\hat{i} + \frac{9}{2}\hat{j} + \frac{5}{2}\hat{k} \]

To solve the problem, we need to find the cross product of two vectors, \( \vec{\beta_1} \) and \( \vec{\beta_2} \), where \( \vec{\beta_1} \) is parallel to \( \vec{\alpha} \) and \( \vec{\beta_2} \) is perpendicular to \( \vec{\alpha} \). ### Step-by-step Solution: 1. **Define the vectors**: \[ \vec{\alpha} = 3\hat{i} + \hat{j} \] ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos
  • JEE MAIN REVISION TEST - 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

Given, vec(a)= 3hat(i) - hat(j) and vec(b)= 2hat(i) + hat(j) - 3hat(k) . Express vec(b) = vec(b)_(1) + vec(b)_(2) where vec(b)_(1) is parallel to vec(a) and vec(b)_(2) is perpendicular to vec(a)

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx vec(b) = hat(j)-hat(k) , then the vector vec(b) is

If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j) + hat(k)) =1 , then vec(a) is equal to

If vec(a)= hat(i) + hat(j) + hat(k) and vec(b)= hat(j)-hat(k) , then find vec(c ) such that vec(a ) xx vec(c )= vec(b) and vec(a).vec(c )=3 .

VMC MODULES ENGLISH-JEE MAIN REVISION TEST - 12 -MATHEMATICS
  1. If the line y = mx + 7 sqrt(3) is normal to the hyperbola (x^(2))/(...

    Text Solution

    |

  2. A plane passes through the point (0,-1,0) and (0,0,1) and makes an ang...

    Text Solution

    |

  3. Let hat(alpha) = 3 hat(i)+hat(j) and hat(beta)= 2 hat(i)-hat(j)+3hat...

    Text Solution

    |

  4. Let the sum of the first n terms of a non-constant A.P., a(1), a(2), a...

    Text Solution

    |

  5. If the function f defined on (pi/6,pi/3) by {{:((sqrt2 cos x -1)/(cot ...

    Text Solution

    |

  6. All the points in the set S={(alpha+i)/(alpha-i):alpha in R } (i= sqrt...

    Text Solution

    |

  7. If the fourth term in the binomial expansin of ((2)/(x) + x^(log(8) x)...

    Text Solution

    |

  8. Let f(x) = 15 -|x-10|, x in R. Then, the set of all values of x, at w...

    Text Solution

    |

  9. Let p, q in R. If 2- sqrt3 is a root of the quadratic equation, x^(2...

    Text Solution

    |

  10. The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here C ...

    Text Solution

    |

  11. If the tangent to the curve, y=x^(3)+ax-b at the point (1, -5) is perp...

    Text Solution

    |

  12. If a tangent to the circle x^(2)+y^(2)=1 intersects the coordinate axe...

    Text Solution

    |

  13. Four persons can hit a target correctly with probabilities (1)/(2),(1)...

    Text Solution

    |

  14. The area (in sq. units) of the region {(x,y) in R^(2) : x^(2) le y le ...

    Text Solution

    |

  15. Find the natural number a for which sum(k=1)^nf(a+k)=16(2^n-1), where...

    Text Solution

    |

  16. Let alpha, and beta are the roots of the equation x^(2)+x +1 =0 then

    Text Solution

    |

  17. Let S be the set of all values of x for which the tangent to the curve...

    Text Solution

    |

  18. If the standard deviation of the numbers -1, 0,1,k is sqrt(5) where ...

    Text Solution

    |

  19. The value of underset(0)overset(pi//2)int (sin^(3)x)/(sin x + cos x)dx...

    Text Solution

    |

  20. The value of cos^(2)10^(@)-cos10^(@)cos 50^(@)+cos^(2)50^(@) is k/2 ...

    Text Solution

    |