Home
Class 12
MATHS
All the points in the set S={(alpha+i)/(...

All the points in the set `S={(alpha+i)/(alpha-i):alpha in R } (i= sqrt(-1))lie` on a

A

straight line whose slope is 1

B

circle whose radius is 1

C

straight line whose slope is `–1`

D

circle whose radius is `sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the set \( S = \left\{ \frac{\alpha + i}{\alpha - i} : \alpha \in \mathbb{R} \right\} \) and determine the geometric representation of the points in this set. ### Step-by-Step Solution: 1. **Define the Expression**: Let \( z = \frac{\alpha + i}{\alpha - i} \). 2. **Multiply by the Conjugate**: To simplify \( z \), multiply the numerator and denominator by the conjugate of the denominator: \[ z = \frac{(\alpha + i)(\alpha + i)}{(\alpha - i)(\alpha + i)} = \frac{(\alpha + i)^2}{\alpha^2 + 1} \] 3. **Expand the Numerator**: Expand the numerator: \[ (\alpha + i)^2 = \alpha^2 + 2\alpha i - 1 \quad (\text{since } i^2 = -1) \] Therefore, we have: \[ z = \frac{\alpha^2 - 1 + 2\alpha i}{\alpha^2 + 1} \] 4. **Separate Real and Imaginary Parts**: From the expression for \( z \), we can identify the real part \( x \) and the imaginary part \( y \): \[ x = \frac{\alpha^2 - 1}{\alpha^2 + 1}, \quad y = \frac{2\alpha}{\alpha^2 + 1} \] 5. **Calculate \( x^2 + y^2 \)**: To find the modulus \( |z| \), we calculate \( x^2 + y^2 \): \[ x^2 + y^2 = \left(\frac{\alpha^2 - 1}{\alpha^2 + 1}\right)^2 + \left(\frac{2\alpha}{\alpha^2 + 1}\right)^2 \] 6. **Combine the Fractions**: Combine the fractions: \[ x^2 + y^2 = \frac{(\alpha^2 - 1)^2 + (2\alpha)^2}{(\alpha^2 + 1)^2} \] Expanding the numerator: \[ (\alpha^2 - 1)^2 + (2\alpha)^2 = \alpha^4 - 2\alpha^2 + 1 + 4\alpha^2 = \alpha^4 + 2\alpha^2 + 1 = (\alpha^2 + 1)^2 \] 7. **Simplify**: Thus, we have: \[ x^2 + y^2 = \frac{(\alpha^2 + 1)^2}{(\alpha^2 + 1)^2} = 1 \] 8. **Conclusion**: Since \( x^2 + y^2 = 1 \), this implies that the modulus \( |z| = 1 \). Therefore, all points \( z \) lie on the unit circle in the complex plane. ### Final Result: The points in the set \( S \) lie on a circle with center at \( (0, 0) \) and radius \( 1 \).

To solve the problem, we need to analyze the set \( S = \left\{ \frac{\alpha + i}{\alpha - i} : \alpha \in \mathbb{R} \right\} \) and determine the geometric representation of the points in this set. ### Step-by-Step Solution: 1. **Define the Expression**: Let \( z = \frac{\alpha + i}{\alpha - i} \). 2. **Multiply by the Conjugate**: ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos
  • JEE MAIN REVISION TEST - 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

Assertion (A ) : the roots x^4 -5x^2 +6=0 are +- sqrt(2) ,+-sqrt(3) Reason (R ) : the equation having the roots alpha_1 , alpha_2 , ….., alpha_n is (x-alpha_1) ( x- alpha_2 )…. (x-alpha_n)=0

Locus of the point of intersection of lines x cosalpha + y sin alpha = a and x sin alpha - y cos alpha =b (alpha in R ) is

If z = ((1+i)^(2))/(alpha-i) , alpha in R has magnitude sqrt((2)/(5)) then the value of alpha is (i) 3 only (ii) -3 only (iii) 3 or -3 (iv) none of these

A sample space consists of 4 elements S=(alpha_(1), alpha_(2), alpha_(3), alpha_(4)) Which defines a probability function on S (where" "alpha_(i)capalpha_(j)nephi" "AA" "i nejand cupalpha_(i)=S)

If alpha and beta are the complex roots of the equation (1+i)x^(2)+(1-i)x-2i=o where i=sqrt(-1) , the value of |alpha-beta|^(2) is

Given that alpha and beta are the roots of the equation x^(2)=x+7 . (i) Prove that (a) (1)/(alpha)=(alpha-1)/(7) and (b) alpha^(3)=8alpha+7 . (ii) Find the numerical value of (alpha)/(beta)+(beta)/(alpha) .

if alpha and beta the roots of z+ (1)/(z) =2 (cos theta + I sin theta ) where 0 lt theta lt pi and i=sqrt(-1) show that |alpha - i |= | beta -i|

Find the pricipal argument of each of the following: (a) -1-isqrt(3) (b) (1+sqrt(3)i)/(3 +i) (c) sin alpha + i(1-cos alpha), 0 gt alpha gt pi (d) (1+ isqrt(3))^(2)

If alpha = (z - i)//(z + i) show that, when z lies above the real axis, alpha will lie within the unit circle which has centre at the origin. Find the locus of alpha as z travels on the real axis form -oo "to" + oo

Find the value of sin (alpha - beta), cos (alpha -beta) and tan (alpha - beta), given cos alpha = (-12)/(13) , cot beta = (24)/(7), alpha in Quadrant II, beta in Quadrant I.

VMC MODULES ENGLISH-JEE MAIN REVISION TEST - 12 -MATHEMATICS
  1. A plane passes through the point (0,-1,0) and (0,0,1) and makes an ang...

    Text Solution

    |

  2. Let hat(alpha) = 3 hat(i)+hat(j) and hat(beta)= 2 hat(i)-hat(j)+3hat...

    Text Solution

    |

  3. Let the sum of the first n terms of a non-constant A.P., a(1), a(2), a...

    Text Solution

    |

  4. If the function f defined on (pi/6,pi/3) by {{:((sqrt2 cos x -1)/(cot ...

    Text Solution

    |

  5. All the points in the set S={(alpha+i)/(alpha-i):alpha in R } (i= sqrt...

    Text Solution

    |

  6. If the fourth term in the binomial expansin of ((2)/(x) + x^(log(8) x)...

    Text Solution

    |

  7. Let f(x) = 15 -|x-10|, x in R. Then, the set of all values of x, at w...

    Text Solution

    |

  8. Let p, q in R. If 2- sqrt3 is a root of the quadratic equation, x^(2...

    Text Solution

    |

  9. The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here C ...

    Text Solution

    |

  10. If the tangent to the curve, y=x^(3)+ax-b at the point (1, -5) is perp...

    Text Solution

    |

  11. If a tangent to the circle x^(2)+y^(2)=1 intersects the coordinate axe...

    Text Solution

    |

  12. Four persons can hit a target correctly with probabilities (1)/(2),(1)...

    Text Solution

    |

  13. The area (in sq. units) of the region {(x,y) in R^(2) : x^(2) le y le ...

    Text Solution

    |

  14. Find the natural number a for which sum(k=1)^nf(a+k)=16(2^n-1), where...

    Text Solution

    |

  15. Let alpha, and beta are the roots of the equation x^(2)+x +1 =0 then

    Text Solution

    |

  16. Let S be the set of all values of x for which the tangent to the curve...

    Text Solution

    |

  17. If the standard deviation of the numbers -1, 0,1,k is sqrt(5) where ...

    Text Solution

    |

  18. The value of underset(0)overset(pi//2)int (sin^(3)x)/(sin x + cos x)dx...

    Text Solution

    |

  19. The value of cos^(2)10^(@)-cos10^(@)cos 50^(@)+cos^(2)50^(@) is k/2 ...

    Text Solution

    |

  20. Let S = { theta in [-2pi,2pi]:2 cos^(2) theta + 3 sin theta = 0}, the...

    Text Solution

    |