Home
Class 12
MATHS
If the fourth term in the binomial expan...

If the fourth term in the binomial expansin of `((2)/(x) + x^(log_(8) x))^(6) (x gt 0)` is `20 xx 8^(7)`, then the value of x is

A

`8^(-2)`

B

8

C

`8^(2)`

D

`8^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) given that the fourth term in the binomial expansion of \( \left( \frac{2}{x} + x^{\log_{8} x} \right)^{6} \) is equal to \( 20 \times 8^{7} \). ### Step-by-Step Solution: 1. **Identify the General Term in the Binomial Expansion**: The general term \( T_{r+1} \) in the binomial expansion of \( (a + b)^n \) is given by: \[ T_{r+1} = \binom{n}{r} a^{n-r} b^r \] Here, \( a = \frac{2}{x} \), \( b = x^{\log_{8} x} \), and \( n = 6 \). 2. **Find the Fourth Term**: The fourth term corresponds to \( r = 3 \) (since \( T_{r+1} \) corresponds to \( r \)): \[ T_{4} = \binom{6}{3} \left(\frac{2}{x}\right)^{6-3} \left(x^{\log_{8} x}\right)^{3} \] Simplifying this gives: \[ T_{4} = \binom{6}{3} \left(\frac{2}{x}\right)^{3} \left(x^{\log_{8} x}\right)^{3} \] 3. **Calculate the Binomial Coefficient**: The binomial coefficient \( \binom{6}{3} \) is calculated as: \[ \binom{6}{3} = \frac{6!}{3!(6-3)!} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 20 \] Thus, \[ T_{4} = 20 \left(\frac{2}{x}\right)^{3} \left(x^{\log_{8} x}\right)^{3} \] 4. **Simplify the Expression**: This can be rewritten as: \[ T_{4} = 20 \cdot \frac{2^3}{x^3} \cdot x^{3 \log_{8} x} = 20 \cdot \frac{8}{x^3} \cdot x^{3 \log_{8} x} \] Which simplifies to: \[ T_{4} = 20 \cdot 8 \cdot x^{3 \log_{8} x - 3} \] 5. **Set the Expression Equal to Given Value**: We know that: \[ T_{4} = 20 \times 8^{7} \] Therefore, we can set up the equation: \[ 20 \cdot 8 \cdot x^{3 \log_{8} x - 3} = 20 \cdot 8^{7} \] 6. **Cancel Common Terms**: Dividing both sides by \( 20 \): \[ 8 \cdot x^{3 \log_{8} x - 3} = 8^{7} \] Dividing both sides by \( 8 \): \[ x^{3 \log_{8} x - 3} = 8^{6} \] 7. **Rewrite \( 8^{6} \)**: Since \( 8 = 2^3 \), we have: \[ 8^{6} = (2^3)^{6} = 2^{18} \] 8. **Express \( x^{3 \log_{8} x - 3} \)**: We can express \( 8^{6} \) in terms of base \( 2 \): \[ x^{3 \log_{8} x - 3} = 2^{18} \] 9. **Taking Logarithms**: Taking logarithm base \( 2 \) on both sides gives: \[ (3 \log_{8} x - 3) \log_{2} x = 18 \] 10. **Substituting \( \log_{8} x \)**: Recall that \( \log_{8} x = \frac{\log_{2} x}{\log_{2} 8} = \frac{\log_{2} x}{3} \): \[ 3 \cdot \frac{\log_{2} x}{3} \log_{2} x - 3 \log_{2} x = 18 \] Simplifying gives: \[ (\log_{2} x)^2 - 3 \log_{2} x - 18 = 0 \] 11. **Solve the Quadratic Equation**: Let \( y = \log_{2} x \): \[ y^2 - 3y - 18 = 0 \] Using the quadratic formula: \[ y = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot (-18)}}{2 \cdot 1} = \frac{3 \pm \sqrt{81}}{2} = \frac{3 \pm 9}{2} \] This gives: \[ y = 6 \quad \text{or} \quad y = -3 \] 12. **Find \( x \)**: - If \( y = 6 \): \( \log_{2} x = 6 \) implies \( x = 2^6 = 64 \). - If \( y = -3 \): \( \log_{2} x = -3 \) implies \( x = 2^{-3} = \frac{1}{8} \). Since \( x > 0 \), both values are valid, but based on the context of the problem, we take \( x = 64 \). ### Final Answer: The value of \( x \) is \( 64 \).

To solve the problem, we need to find the value of \( x \) given that the fourth term in the binomial expansion of \( \left( \frac{2}{x} + x^{\log_{8} x} \right)^{6} \) is equal to \( 20 \times 8^{7} \). ### Step-by-Step Solution: 1. **Identify the General Term in the Binomial Expansion**: The general term \( T_{r+1} \) in the binomial expansion of \( (a + b)^n \) is given by: \[ T_{r+1} = \binom{n}{r} a^{n-r} b^r ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos
  • JEE MAIN REVISION TEST - 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

If the middle term in the binomial expansion of ((1)/(x) + x sin x )^(10) is ( 63)/( 8) , then the value of 6sin^(2) x +sin x -2 is

Write down the fourth term in the binomial expansion of (px + (1)/(x) )^(n) . If this term is independent of x , find the value of n. With this value of n , calculate the value of p given that the fourth term is equal to (5)/(2) .

If the third term in the binomial expansion of (1+x^(log_(2)x))^(5) equals 2560, then a possible value of x is:

If the fourth term in the binomial expansion of (sqrt ((1)/(x ^( 1 + log _10x) )) + x ^((1)/(12)) ) ^ 6 is equal to 200 , and x gt 1 , then the value of x is : A. 10 ^ 4 B. 10 ^(3) C. 100 D. None of these

If the middle term in the expansion of ((1)/(x)+x sinx)^(10) is equal to 7(7)/(8) , then the principal value of x is:

If the middle term in the binomial expansion of (1/x+xsinx)^(10) is equal to (63)/8, find the value of x.

Third term in expression of (x + x^(log_(10)x))^(5) is 10^(6) than possible value of x are

If the fourth term in the expansion of {sqrt(1/(""_"x^log(x+1)"}'+1/(x^12)}^6 is equal to 200 and x >1, then find x

If |(2x,5),(8,x)|=|(6,-2),(7,3)| then the value of x is

If the 6th term in the expansion of (1/(x^(8/3))+x^2(log)_(10)x)^8 is 5600, then x equals 1 b. (log)_e 10 c. 10 d. x does not exist

VMC MODULES ENGLISH-JEE MAIN REVISION TEST - 12 -MATHEMATICS
  1. A plane passes through the point (0,-1,0) and (0,0,1) and makes an ang...

    Text Solution

    |

  2. Let hat(alpha) = 3 hat(i)+hat(j) and hat(beta)= 2 hat(i)-hat(j)+3hat...

    Text Solution

    |

  3. Let the sum of the first n terms of a non-constant A.P., a(1), a(2), a...

    Text Solution

    |

  4. If the function f defined on (pi/6,pi/3) by {{:((sqrt2 cos x -1)/(cot ...

    Text Solution

    |

  5. All the points in the set S={(alpha+i)/(alpha-i):alpha in R } (i= sqrt...

    Text Solution

    |

  6. If the fourth term in the binomial expansin of ((2)/(x) + x^(log(8) x)...

    Text Solution

    |

  7. Let f(x) = 15 -|x-10|, x in R. Then, the set of all values of x, at w...

    Text Solution

    |

  8. Let p, q in R. If 2- sqrt3 is a root of the quadratic equation, x^(2...

    Text Solution

    |

  9. The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here C ...

    Text Solution

    |

  10. If the tangent to the curve, y=x^(3)+ax-b at the point (1, -5) is perp...

    Text Solution

    |

  11. If a tangent to the circle x^(2)+y^(2)=1 intersects the coordinate axe...

    Text Solution

    |

  12. Four persons can hit a target correctly with probabilities (1)/(2),(1)...

    Text Solution

    |

  13. The area (in sq. units) of the region {(x,y) in R^(2) : x^(2) le y le ...

    Text Solution

    |

  14. Find the natural number a for which sum(k=1)^nf(a+k)=16(2^n-1), where...

    Text Solution

    |

  15. Let alpha, and beta are the roots of the equation x^(2)+x +1 =0 then

    Text Solution

    |

  16. Let S be the set of all values of x for which the tangent to the curve...

    Text Solution

    |

  17. If the standard deviation of the numbers -1, 0,1,k is sqrt(5) where ...

    Text Solution

    |

  18. The value of underset(0)overset(pi//2)int (sin^(3)x)/(sin x + cos x)dx...

    Text Solution

    |

  19. The value of cos^(2)10^(@)-cos10^(@)cos 50^(@)+cos^(2)50^(@) is k/2 ...

    Text Solution

    |

  20. Let S = { theta in [-2pi,2pi]:2 cos^(2) theta + 3 sin theta = 0}, the...

    Text Solution

    |