Home
Class 12
MATHS
The integral int sec^(2//3)x cosec^(4//3...

The integral `int sec^(2//3)x cosec^(4//3)x dx` is equal to :
(Here C is a constant of integration)

A

`3 tan^(-1//3) x +C`

B

`-3 cot^(-1//3)x+C`

C

`- 3/4 tan^((-4//3)) x +C`

D

`-3 tan^(-1//3)x+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \sec^{\frac{2}{3}} x \csc^{\frac{4}{3}} x \, dx \), we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \sec^{\frac{2}{3}} x \csc^{\frac{4}{3}} x \, dx \] We can express this in terms of sine and cosine: \[ I = \int \frac{\sec^{\frac{2}{3}} x}{\sin^{\frac{4}{3}} x} \, dx = \int \frac{1}{\cos^{\frac{2}{3}} x \sin^{\frac{4}{3}} x} \, dx \] ### Step 2: Simplify the integral Next, we multiply and divide by \(\cos^2 x\): \[ I = \int \frac{\cos^2 x}{\sin^{\frac{4}{3}} x \cos^{\frac{4}{3}} x} \, dx = \int \frac{1}{\sin^{\frac{4}{3}} x} \cdot \frac{1}{\cos^{\frac{4}{3}} x} \cdot \cos^2 x \, dx \] This can be rewritten as: \[ I = \int \frac{\cos^2 x}{\sin^{\frac{4}{3}} x} \cdot \sec^{\frac{4}{3}} x \, dx \] ### Step 3: Substitute \( t = \tan x \) Let \( t = \tan x \), then \( dt = \sec^2 x \, dx \) or \( dx = \frac{dt}{\sec^2 x} \). Also, we have: \[ \sin x = \frac{t}{\sqrt{1+t^2}}, \quad \cos x = \frac{1}{\sqrt{1+t^2}} \] Thus: \[ \sin^{\frac{4}{3}} x = \left(\frac{t}{\sqrt{1+t^2}}\right)^{\frac{4}{3}} = \frac{t^{\frac{4}{3}}}{(1+t^2)^{\frac{2}{3}}} \] And: \[ \cos^{\frac{2}{3}} x = \left(\frac{1}{\sqrt{1+t^2}}\right)^{\frac{2}{3}} = \frac{1^{\frac{2}{3}}}{(1+t^2)^{\frac{1}{3}}} \] ### Step 4: Substitute into the integral Now substituting these into the integral gives: \[ I = \int \frac{\frac{1}{(1+t^2)^{\frac{1}{3}}}}{\frac{t^{\frac{4}{3}}}{(1+t^2)^{\frac{2}{3}}}} \cdot \frac{dt}{\sec^2 x} \] This simplifies to: \[ I = \int \frac{(1+t^2)^{\frac{1}{3}}}{t^{\frac{4}{3}}} \, dt \] ### Step 5: Integrate Now we integrate: \[ I = \int t^{-\frac{4}{3}} (1+t^2)^{\frac{1}{3}} \, dt \] This integral can be solved using standard integration techniques. ### Step 6: Back substitute After integrating, we will substitute back \( t = \tan x \) to express the result in terms of \( x \). ### Final Result The final result will be: \[ I = -3 \tan^{-\frac{1}{3}} x + C \]

To solve the integral \( I = \int \sec^{\frac{2}{3}} x \csc^{\frac{4}{3}} x \, dx \), we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \sec^{\frac{2}{3}} x \csc^{\frac{4}{3}} x \, dx \] We can express this in terms of sine and cosine: ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos
  • JEE MAIN REVISION TEST - 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

The integral I=int sec^(3)x tan^(3)xdx is equal to (where, C is the constant of integration)

The integral int(2x^(3)-1)/(x^(4)+x)dx is equal to : (Here C is a constant of integration)

The value of the integral int("cosec"^(2)x-2019)/(cos^(2019)x)dx is equal to (where C is the constant of integration)

The value of the integral intx^((1)/(3))(1-sqrtx)^(3)dx is equal to (where c is the constant of integration)

The value of intsin^(3)x sqrt(cosx)dx is equal to (where, c is the constant of integration)

The integral intcos(log_(e)x)dx is equal to: (where C is a constant of integration)

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

The value of the integral inte^(x^(2)+(1)/(x))(2x^(2)-(1)/(x)+1)dx is equal to (where C is the constant of integration)

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)

VMC MODULES ENGLISH-JEE MAIN REVISION TEST - 12 -MATHEMATICS
  1. A plane passes through the point (0,-1,0) and (0,0,1) and makes an ang...

    Text Solution

    |

  2. Let hat(alpha) = 3 hat(i)+hat(j) and hat(beta)= 2 hat(i)-hat(j)+3hat...

    Text Solution

    |

  3. Let the sum of the first n terms of a non-constant A.P., a(1), a(2), a...

    Text Solution

    |

  4. If the function f defined on (pi/6,pi/3) by {{:((sqrt2 cos x -1)/(cot ...

    Text Solution

    |

  5. All the points in the set S={(alpha+i)/(alpha-i):alpha in R } (i= sqrt...

    Text Solution

    |

  6. If the fourth term in the binomial expansin of ((2)/(x) + x^(log(8) x)...

    Text Solution

    |

  7. Let f(x) = 15 -|x-10|, x in R. Then, the set of all values of x, at w...

    Text Solution

    |

  8. Let p, q in R. If 2- sqrt3 is a root of the quadratic equation, x^(2...

    Text Solution

    |

  9. The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here C ...

    Text Solution

    |

  10. If the tangent to the curve, y=x^(3)+ax-b at the point (1, -5) is perp...

    Text Solution

    |

  11. If a tangent to the circle x^(2)+y^(2)=1 intersects the coordinate axe...

    Text Solution

    |

  12. Four persons can hit a target correctly with probabilities (1)/(2),(1)...

    Text Solution

    |

  13. The area (in sq. units) of the region {(x,y) in R^(2) : x^(2) le y le ...

    Text Solution

    |

  14. Find the natural number a for which sum(k=1)^nf(a+k)=16(2^n-1), where...

    Text Solution

    |

  15. Let alpha, and beta are the roots of the equation x^(2)+x +1 =0 then

    Text Solution

    |

  16. Let S be the set of all values of x for which the tangent to the curve...

    Text Solution

    |

  17. If the standard deviation of the numbers -1, 0,1,k is sqrt(5) where ...

    Text Solution

    |

  18. The value of underset(0)overset(pi//2)int (sin^(3)x)/(sin x + cos x)dx...

    Text Solution

    |

  19. The value of cos^(2)10^(@)-cos10^(@)cos 50^(@)+cos^(2)50^(@) is k/2 ...

    Text Solution

    |

  20. Let S = { theta in [-2pi,2pi]:2 cos^(2) theta + 3 sin theta = 0}, the...

    Text Solution

    |