Home
Class 12
MATHS
The value of underset(0)overset(pi//2)in...

The value of `underset(0)overset(pi//2)int (sin^(3)x)/(sin x + cos x)dx` is `(pi-1)/(k)` . The value of `k` is ________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} \, dx, \] we will use a symmetry property of the integral and some algebraic manipulation. ### Step 1: Write the integral We start with the integral: \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} \, dx. \] ### Step 2: Use the substitution \( x = \frac{\pi}{2} - t \) Using the substitution \( x = \frac{\pi}{2} - t \), we have \( dx = -dt \). The limits change as follows: when \( x = 0 \), \( t = \frac{\pi}{2} \) and when \( x = \frac{\pi}{2} \), \( t = 0 \). Thus, we can rewrite the integral: \[ I = \int_{\frac{\pi}{2}}^{0} \frac{\sin^3\left(\frac{\pi}{2} - t\right)}{\sin\left(\frac{\pi}{2} - t\right) + \cos\left(\frac{\pi}{2} - t\right)} (-dt). \] This simplifies to: \[ I = \int_0^{\frac{\pi}{2}} \frac{\cos^3 t}{\cos t + \sin t} \, dt. \] ### Step 3: Combine the two integrals Now we have two expressions for \( I \): \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} \, dx, \] \[ I = \int_0^{\frac{\pi}{2}} \frac{\cos^3 x}{\sin x + \cos x} \, dx. \] Adding these two integrals gives: \[ 2I = \int_0^{\frac{\pi}{2}} \frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} \, dx. \] ### Step 4: Simplify the numerator using the identity Using the identity \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \): \[ \sin^3 x + \cos^3 x = (\sin x + \cos x)(\sin^2 x - \sin x \cos x + \cos^2 x). \] Since \( \sin^2 x + \cos^2 x = 1 \), we can write: \[ \sin^3 x + \cos^3 x = (\sin x + \cos x)(1 - \sin x \cos x). \] ### Step 5: Substitute back into the integral Substituting this back into our equation for \( 2I \): \[ 2I = \int_0^{\frac{\pi}{2}} (1 - \sin x \cos x) \, dx. \] ### Step 6: Evaluate the integral Now we can split the integral: \[ 2I = \int_0^{\frac{\pi}{2}} 1 \, dx - \int_0^{\frac{\pi}{2}} \sin x \cos x \, dx. \] The first integral evaluates to: \[ \int_0^{\frac{\pi}{2}} 1 \, dx = \frac{\pi}{2}. \] The second integral can be evaluated using the identity \( \sin x \cos x = \frac{1}{2} \sin(2x) \): \[ \int_0^{\frac{\pi}{2}} \sin x \cos x \, dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} \sin(2x) \, dx = \frac{1}{2} \left[-\frac{1}{2} \cos(2x)\right]_0^{\frac{\pi}{2}} = \frac{1}{2} \left(0 - (-\frac{1}{2})\right) = \frac{1}{4}. \] ### Step 7: Combine results Thus, \[ 2I = \frac{\pi}{2} - \frac{1}{4}. \] ### Step 8: Solve for \( I \) Now, we can solve for \( I \): \[ 2I = \frac{\pi}{2} - \frac{1}{4} = \frac{2\pi - 1}{4} \implies I = \frac{2\pi - 1}{8}. \] ### Step 9: Compare with the given expression Given that: \[ I = \frac{\pi - 1}{k}, \] we can set: \[ \frac{2\pi - 1}{8} = \frac{\pi - 1}{k}. \] Cross-multiplying gives: \[ k(2\pi - 1) = 8(\pi - 1). \] ### Step 10: Solve for \( k \) Expanding and rearranging: \[ 2k\pi - k = 8\pi - 8 \implies 2k\pi - 8\pi = k - 8 \implies (2k - 8)\pi = k - 8. \] Setting coefficients equal, we find: \[ 2k - 8 = 0 \implies 2k = 8 \implies k = 4. \] Thus, the value of \( k \) is \[ \boxed{4}. \]

To solve the integral \[ I = \int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} \, dx, \] we will use a symmetry property of the integral and some algebraic manipulation. ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos
  • JEE MAIN REVISION TEST - 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

The value of overset(3pi//4)underset(pi//4)int (x)/(1+sin x) dx is equal to

int_(0)^(pi//2) x sin x cos x dx

Evaluate : int_0^(pi/2)(sin^2x)/(sin x+cos x)dx

int_0^(pi/2) sin^3x/(sin^3x+cos^3x)dx

Evaluate int_(0)^(pi//2) (cos^2 x)/(1+sin x cos x)dx .

Prove that : int_(0)^(pi//2) (sin^(3)x)/(sin^(3) x+ cos^(3)x)dx =(pi)/(4)

The value of int_(0)^(pi//2) (x+sin x)/(1+cos x)dx , is

The value of int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx , is

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

VMC MODULES ENGLISH-JEE MAIN REVISION TEST - 12 -MATHEMATICS
  1. A plane passes through the point (0,-1,0) and (0,0,1) and makes an ang...

    Text Solution

    |

  2. Let hat(alpha) = 3 hat(i)+hat(j) and hat(beta)= 2 hat(i)-hat(j)+3hat...

    Text Solution

    |

  3. Let the sum of the first n terms of a non-constant A.P., a(1), a(2), a...

    Text Solution

    |

  4. If the function f defined on (pi/6,pi/3) by {{:((sqrt2 cos x -1)/(cot ...

    Text Solution

    |

  5. All the points in the set S={(alpha+i)/(alpha-i):alpha in R } (i= sqrt...

    Text Solution

    |

  6. If the fourth term in the binomial expansin of ((2)/(x) + x^(log(8) x)...

    Text Solution

    |

  7. Let f(x) = 15 -|x-10|, x in R. Then, the set of all values of x, at w...

    Text Solution

    |

  8. Let p, q in R. If 2- sqrt3 is a root of the quadratic equation, x^(2...

    Text Solution

    |

  9. The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here C ...

    Text Solution

    |

  10. If the tangent to the curve, y=x^(3)+ax-b at the point (1, -5) is perp...

    Text Solution

    |

  11. If a tangent to the circle x^(2)+y^(2)=1 intersects the coordinate axe...

    Text Solution

    |

  12. Four persons can hit a target correctly with probabilities (1)/(2),(1)...

    Text Solution

    |

  13. The area (in sq. units) of the region {(x,y) in R^(2) : x^(2) le y le ...

    Text Solution

    |

  14. Find the natural number a for which sum(k=1)^nf(a+k)=16(2^n-1), where...

    Text Solution

    |

  15. Let alpha, and beta are the roots of the equation x^(2)+x +1 =0 then

    Text Solution

    |

  16. Let S be the set of all values of x for which the tangent to the curve...

    Text Solution

    |

  17. If the standard deviation of the numbers -1, 0,1,k is sqrt(5) where ...

    Text Solution

    |

  18. The value of underset(0)overset(pi//2)int (sin^(3)x)/(sin x + cos x)dx...

    Text Solution

    |

  19. The value of cos^(2)10^(@)-cos10^(@)cos 50^(@)+cos^(2)50^(@) is k/2 ...

    Text Solution

    |

  20. Let S = { theta in [-2pi,2pi]:2 cos^(2) theta + 3 sin theta = 0}, the...

    Text Solution

    |