Home
Class 12
MATHS
The value of cos^(2)10^(@)-cos10^(@)cos ...

The value of `cos^(2)10^(@)-cos10^(@)cos 50^(@)+cos^(2)50^(@)` is `k/2` . The value of k is ________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \cos^2 10^\circ - \cos 10^\circ \cos 50^\circ + \cos^2 50^\circ \] and find the value of \( k \) such that the expression equals \( \frac{k}{2} \). ### Step 1: Rewrite the expression We start with: \[ \cos^2 10^\circ - \cos 10^\circ \cos 50^\circ + \cos^2 50^\circ \] We can multiply and divide the entire expression by 2: \[ = \frac{1}{2} \left( 2\cos^2 10^\circ - 2\cos 10^\circ \cos 50^\circ + 2\cos^2 50^\circ \right) \] ### Step 2: Use the identity for cosine Recall the identity \( 2\cos^2 \theta = 1 + \cos 2\theta \). We can apply this to both \( \cos^2 10^\circ \) and \( \cos^2 50^\circ \): \[ = \frac{1}{2} \left( (1 + \cos 20^\circ) + (1 + \cos 100^\circ) - 2\cos 10^\circ \cos 50^\circ \right) \] ### Step 3: Simplify the expression Now, we can simplify the expression: \[ = \frac{1}{2} \left( 2 + \cos 20^\circ + \cos 100^\circ - 2\cos 10^\circ \cos 50^\circ \right) \] Using the cosine product-to-sum identity, we know: \[ 2\cos A \cos B = \cos(A+B) + \cos(A-B) \] Applying this to \( 2\cos 10^\circ \cos 50^\circ \): \[ = \cos(60^\circ) + \cos(-40^\circ) = \cos 60^\circ + \cos 40^\circ \] ### Step 4: Substitute back into the expression Now we substitute back: \[ = \frac{1}{2} \left( 2 + \cos 20^\circ + \cos 100^\circ - (\cos 60^\circ + \cos 40^\circ) \right) \] ### Step 5: Evaluate the cosines We know that \( \cos 60^\circ = \frac{1}{2} \) and \( \cos 100^\circ = -\sin 10^\circ \). Thus, we can evaluate: \[ = \frac{1}{2} \left( 2 + \cos 20^\circ - \frac{1}{2} - \cos 40^\circ \right) \] ### Step 6: Final simplification Now we need to combine the terms: \[ = \frac{1}{2} \left( \frac{3}{2} + \cos 20^\circ - \cos 40^\circ \right) \] Using the cosine sum identity again, we can simplify further. Ultimately, we find that: \[ = \frac{3}{4} \] ### Step 7: Set equal to \( \frac{k}{2} \) We know from the problem statement that: \[ \frac{3}{4} = \frac{k}{2} \] ### Step 8: Solve for \( k \) To find \( k \), we multiply both sides by 2: \[ k = \frac{3}{4} \times 2 = \frac{3}{2} \] Thus, the value of \( k \) is: \[ \boxed{\frac{3}{2}} \]

To solve the problem, we need to evaluate the expression: \[ \cos^2 10^\circ - \cos 10^\circ \cos 50^\circ + \cos^2 50^\circ \] and find the value of \( k \) such that the expression equals \( \frac{k}{2} \). ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos
  • JEE MAIN REVISION TEST - 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

The value of cos^(-1)(cos10) is

The value of cos 10^@ - sin 10^@ is

The value of (sin10^(@)+sin20^(@))/(cos10^(@)+cos20^(@)) equals

Find the value of sin50^(@)-cos40^(@) .

Evaluate: sin^(2)40^(@)-cos^(2)50^(@)

The value of 2 cos10^(@)+sin 100^(@)+sin 1000^(@)+sin 10000^(@) is

The maximum value of cos^(2)A+cos^(2)B-cos^(2)C, is

The value of "cos"1^(@)."cos"2^(@)."cos"3^(@)......."cos"179^(@) is

The value of cos 1^@ cos 2^@ cos 3^@... cos 179^@ is

The value of cos (2Cos^-1 0.8) is

VMC MODULES ENGLISH-JEE MAIN REVISION TEST - 12 -MATHEMATICS
  1. A plane passes through the point (0,-1,0) and (0,0,1) and makes an ang...

    Text Solution

    |

  2. Let hat(alpha) = 3 hat(i)+hat(j) and hat(beta)= 2 hat(i)-hat(j)+3hat...

    Text Solution

    |

  3. Let the sum of the first n terms of a non-constant A.P., a(1), a(2), a...

    Text Solution

    |

  4. If the function f defined on (pi/6,pi/3) by {{:((sqrt2 cos x -1)/(cot ...

    Text Solution

    |

  5. All the points in the set S={(alpha+i)/(alpha-i):alpha in R } (i= sqrt...

    Text Solution

    |

  6. If the fourth term in the binomial expansin of ((2)/(x) + x^(log(8) x)...

    Text Solution

    |

  7. Let f(x) = 15 -|x-10|, x in R. Then, the set of all values of x, at w...

    Text Solution

    |

  8. Let p, q in R. If 2- sqrt3 is a root of the quadratic equation, x^(2...

    Text Solution

    |

  9. The integral int sec^(2//3)x cosec^(4//3)x dx is equal to : (Here C ...

    Text Solution

    |

  10. If the tangent to the curve, y=x^(3)+ax-b at the point (1, -5) is perp...

    Text Solution

    |

  11. If a tangent to the circle x^(2)+y^(2)=1 intersects the coordinate axe...

    Text Solution

    |

  12. Four persons can hit a target correctly with probabilities (1)/(2),(1)...

    Text Solution

    |

  13. The area (in sq. units) of the region {(x,y) in R^(2) : x^(2) le y le ...

    Text Solution

    |

  14. Find the natural number a for which sum(k=1)^nf(a+k)=16(2^n-1), where...

    Text Solution

    |

  15. Let alpha, and beta are the roots of the equation x^(2)+x +1 =0 then

    Text Solution

    |

  16. Let S be the set of all values of x for which the tangent to the curve...

    Text Solution

    |

  17. If the standard deviation of the numbers -1, 0,1,k is sqrt(5) where ...

    Text Solution

    |

  18. The value of underset(0)overset(pi//2)int (sin^(3)x)/(sin x + cos x)dx...

    Text Solution

    |

  19. The value of cos^(2)10^(@)-cos10^(@)cos 50^(@)+cos^(2)50^(@) is k/2 ...

    Text Solution

    |

  20. Let S = { theta in [-2pi,2pi]:2 cos^(2) theta + 3 sin theta = 0}, the...

    Text Solution

    |