Home
Class 12
MATHS
The tangent and normal to the ellipse 3x...

The tangent and normal to the ellipse `3x^(2) + 5y^(2) = 32` at the point `P(2, 2) `meet the` x`-axis at `Q `and` R`, respectively. Then the area (in sq. units) of the triangle PQR is:

A

`(34)/(15)`

B

`(16)/(3)`

C

`(68)/(15)`

D

`(14)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
C

`3x^(2) + 5y^(2) = 32`
Tangent : `3x + 5y = 16 :. Q ((16)/(3), 0)`
Normal : `y -2 = (5)/(3) (x-2) rArr 5x - 3y -4 = 0 :. R ((4)/(5), 0)`
`Ar DeltaPQR = (1)/(2) |(2,2,1),((16)/(3),0,1),((4)/(5),0,1)|= (68)/(15)`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 12

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST - 18

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos

Similar Questions

Explore conceptually related problems

The equation of normal to the ellipse 4x^2 +9y^2 = 72 at point (3,2) is:

The tangent and normal to the ellipse x^(2) + 4y^(2) = 4 at a point P(0) on it meets the major axis in Q and R respectively. If 0lt (pi)/(2) and QR = 2 then show that theta = cos^(-1)(2/3) .

The tangent and normal to the ellipse x^2+4y^2=4 at a point P(theta) on it meets the major axis in Q and R respectively. If 0 < theta < pi/2 and QR=2 then show that theta=

If the tangent and normal to the ellipse x^2 + 4y^2 = 4 at point P (theta) meets the major axes in Q and R respectively, and QR = 3 , then (A) cos theta = 1 /sqrt(3) (B) cos theta= 1/3 (C) cos theta = 2/3 (D) costheta = (-2/(3)

Let P and Q be two points on the ellipse x^(2) + 4y^(2) = 16 , whose eccentric angles are (pi)/(4) and (3x)/(4) respectively. Then the area of the triangle OPQ is

Tangents are drawn to the hyperbola 4x^2-y^2=36 at the points P and Q. If these tangents intersect at the point T(0,3) then the area (in sq units) of triangle PTQ is

Tangents are drawn to the hyperbola 4x^2-y^2=36 at the points P and Q. If these tangents intersect at the point T(0,3) then the area (in sq units) of triangle PTQ is

If normal at any point P to ellipse (x^2)/(a^2) + (y^2)/(b^2) = 1(a > b) meet the x & y axes at A and B respectively. Such that (PA)/(PB) = 3/4 , then eccentricity of the ellipse is:

The tangent and normal at any point P of an ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 cut its major axis in point Q and R respectively. If QR=a prove that the eccentric angle of the point P is given by e^(2)cos^(2)phi+cosphi-1=0

A normal inclined at 45^@ to the axis of the ellipse x^2 /a^2 + y^2 / b^2 = 1 is drawn. It meets the x-axis & the y-axis in P & Q respectively. If C is the centre of the ellipse, show that the area of triangle CPQ is (a^2 - b^2)^2/(2(a^2 +b^2)) sq units