Home
Class 12
MATHS
Let f (x) = log e (sinx ), ( 0 lt x lt p...

Let `f (x) = log _e (sinx ), ( 0 lt x lt pi ) and g(x) = sin ^(-1) (e ^(-x)), (x ge 0)`. If `alpha` is a positive real number such that ` a = ( fog)' ( alpha ) and b = (fog ) ( alpha )`, then

A

`a alpha^(2) + b alpha -a = -2 alpha^(2)`

B

`a alpha^(2) + b alpha + a = 0`

C

`a alpha^(2) - b alpha -a = 1`

D

`a alpha^(2) - b alpha - a = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a \) and \( b \) defined as follows: 1. \( a = (f \circ g)'(\alpha) \) 2. \( b = (f \circ g)(\alpha) \) Where: - \( f(x) = \log_e(\sin x) \) for \( 0 < x < \pi \) - \( g(x) = \sin^{-1}(e^{-x}) \) for \( x \geq 0 \) ### Step 1: Find \( f(g(x)) \) We start by substituting \( g(x) \) into \( f(x) \): \[ f(g(x)) = f(\sin^{-1}(e^{-x})) = \log_e(\sin(\sin^{-1}(e^{-x}))) \] Using the property that \( \sin(\sin^{-1}(y)) = y \), we have: \[ f(g(x)) = \log_e(e^{-x}) \] ### Step 2: Simplify \( f(g(x)) \) Now, we can simplify \( \log_e(e^{-x}) \): \[ f(g(x)) = -x \] ### Step 3: Find \( b \) Now we can find \( b \): \[ b = f(g(\alpha)) = -\alpha \] ### Step 4: Differentiate \( f(g(x)) \) to find \( a \) Next, we differentiate \( f(g(x)) \): \[ (f \circ g)'(x) = \frac{d}{dx}(-x) = -1 \] Thus, we find: \[ a = (f \circ g)'(\alpha) = -1 \] ### Step 5: Summary of results We have determined: - \( a = -1 \) - \( b = -\alpha \) ### Step 6: Check options Now we need to check which of the given options are correct based on \( a \) and \( b \): 1. **Option 1:** \( -1 \cdot \alpha^2 + (-\alpha)(-\alpha) - (-1) = -2\alpha^2 \) 2. **Option 2:** \( -1 \cdot \alpha^2 + (-\alpha)(-\alpha) - 1 = -2\alpha^2 - 1 \) 3. **Option 3:** \( -1 \cdot \alpha^2 - (-\alpha)(-\alpha) - (-1) = 1 \) 4. **Option 4:** \( -1 \cdot \alpha^2 - (-\alpha)(-\alpha) = 0 \) After evaluating each option: - **Option 1:** Not equal. - **Option 2:** Not equal. - **Option 3:** Equal to 1, thus correct. - **Option 4:** Not equal. ### Final Answer The correct option is **Option 3**. ---

To solve the problem, we need to find the values of \( a \) and \( b \) defined as follows: 1. \( a = (f \circ g)'(\alpha) \) 2. \( b = (f \circ g)(\alpha) \) Where: - \( f(x) = \log_e(\sin x) \) for \( 0 < x < \pi \) - \( g(x) = \sin^{-1}(e^{-x}) \) for \( x \geq 0 \) ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 13

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 12

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST - 18

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos

Similar Questions

Explore conceptually related problems

If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1 , then

Find fog and gof if: f(x)=e^(x),g(x)=lnx

Consider f (x) = x ^(ln x), and g (x) = e ^(2) x. Let alpha and beta be two values of x satisfying f (x) = g(x)( alpha lt beta) If h (x) = (f (x))/(g (x)) then h'(alpha) equals to:

Find fog and gof , if f(x)=e^x , g(x)=(log)_e x

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

Let f'(sin x)lt0 and f''(sin x) gt0 forall x in (0,(pi)/(2)) and g(x) =f(sinx)+f(cosx) which of the following is true?

If f(x)=1/x and g(x) = 0 then fog is

Let f(x) = log_(e) x and g(x) =(x^(4) -2x^(3) + 3x^(2) - 2x+2)/(2x^(2) - 2x + 1) Then , the domain of fog (x) is

Find fog and gof , if f(x)=x+1 , g(x)=sinx

If 0 lt alpha lt pi/6 , then the value of (alpha cosec alpha ) is