Home
Class 12
MATHS
Value of underset(ntoinfty)(lim)((n+1)^(...

Value of `underset(ntoinfty)(lim)((n+1)^(1//3)+(n+2)^(1//3)+…+(2n)^(1//3))/(n^(4//3))` is equal to

A

`4/3(2)^(3//4)`

B

`3/4(2)^(4//3)-4/3`

C

`4/3(2)^(4//3)`

D

`3/4(2)^(4//3)-3/4`

Text Solution

Verified by Experts

The correct Answer is:
D

`lim_(n to infty) ((n+1)^(1//3)/n^(4//3) + (n+2)^(1//3)/(n^(4//3) +……..+(2n)^(1//3)/n^(4//3)))`
`lim_(n to infty) sum_(r=1)^(n) (n+r)^(1//3)/n^(4//3), lim_(n to infty)sum_(r=1)^(n)(n^(1//3)(1+r/n)^(1//3))/(n^(4//3))`
`lim_(0)^(1)(1+x)^(1//3) dx`
`[(1+x)^(4//3)/(4//3)]_(0)^(1) rArr (2^(4//3))/(4//3) -1/(4//3) rarr 3/4 .2^(4//3) - 3/4`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST -14

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 7|JEE - 2020

    VMC MODULES ENGLISH|Exercise Mathematics (Section - 2) Numercial type questions|5 Videos
  • JEE MAIN REVISION TEST -17 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr oo) (4^(1//n)-1)/(3^(1//n)-1) is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n) is equal to

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

The value of lim_(n rarr infty) (1)/(n) {(n+1)(n+2)(n+3)…(n+n)}^(1//n) is equal to

lim_(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

The value of lim_(nrarroo)(1^(2)-2^(2)+3^(2)-4^(2)+5^(2)….+(2n+1)^(2))/(n^(2)) is equal to

lim_(ntooo) (-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to (n inN)

underset(n to oo)lim" " underset(r=2n+1)overset(3n)sum (n)/(r^(2)-n^(2)) is equal to

The value of lim _(xto oo) ((n !)/(n ^(n)))^((3n^(3)+4)/(4n ^(4)-1)), n inN is equal to:

The value of lim_(nrarroo)((1)/(2n)+(1)/(2n+1)+(1)/(2n+2)+…..+(1)/(4n)) is equal to