Home
Class 12
MATHS
Evaluate, underset(xto1)"lim"(x^(4)-1)/(...

Evaluate, `underset(xto1)"lim"(x^(4)-1)/(x-1)= underset(xtok)"lim"(x^(3)-k^(3))/(x^(2)-k^(2))` , then find the value of k.

A

`3/2`

B

`4/3`

C

`8/3`

D

`3/8`

Text Solution

Verified by Experts

The correct Answer is:
C

`lim_(x to 1)(x^(4)-1)/(x-1) = lim_(x to 1)(x^(3)-k^(3))/(x^(2)-k^(2)) rArr 4(1)^(3) = lim_(x to k)((x-k)(x^(2) +k^(2)+kx))/((x-k)(x+k))`
`rArr 4=3/2 k rArr k=8/3`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST -14

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 7|JEE - 2020

    VMC MODULES ENGLISH|Exercise Mathematics (Section - 2) Numercial type questions|5 Videos
  • JEE MAIN REVISION TEST -17 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Evaluate underset(xto3)"lim"((x^(2)-9))/((x-3))

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

Evaluate underset(xto1)lim(a^(x-1)-1)/(sinpix).

If Lim_(x to 1) (x^(4)-1)/(x-1)=Lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , find the value of k .

Evaluate underset(xto1)"lim"(x^(4)-sqrt(x))/(sqrt(x)-1) .

Evaluate: underset(xrarr0)lim((1-x)^n-1)/(x)

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

Evaluate : underset( x to 0 ) lim (x) ^((1)/(log x))

Evaluate underset(xto0)lim(1-cos(1-cosx))/(x^(4)).

Evaluate underset(x to -oo)lim(sqrt(x^(2)+3x+1))/(2x+4)