Home
Class 12
MATHS
The value of int(0)^(2pi)[sin2x(1+cos3x)...

The value of `int_(0)^(2pi)[sin2x(1+cos3x)]` dx, where [t] denotes

A

`-pi`

B

`2pi`

C

`pi`

D

`-2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{2\pi} \left\lfloor \sin(2x)(1 + \cos(3x)) \right\rfloor \, dx \), we will break it down step by step. ### Step 1: Split the Integral We can split the integral into two parts: \[ I = \int_{0}^{\pi} \left\lfloor \sin(2x)(1 + \cos(3x)) \right\rfloor \, dx + \int_{\pi}^{2\pi} \left\lfloor \sin(2x)(1 + \cos(3x)) \right\rfloor \, dx \] Let: \[ I_1 = \int_{0}^{\pi} \left\lfloor \sin(2x)(1 + \cos(3x)) \right\rfloor \, dx \] \[ I_2 = \int_{\pi}^{2\pi} \left\lfloor \sin(2x)(1 + \cos(3x)) \right\rfloor \, dx \] ### Step 2: Change of Variables for \( I_2 \) For \( I_2 \), we perform a change of variables. Let \( x = 2\pi - t \). Then \( dx = -dt \). The limits change as follows: - When \( x = \pi \), \( t = \pi \) - When \( x = 2\pi \), \( t = 0 \) Thus, \[ I_2 = \int_{\pi}^{0} \left\lfloor \sin(2(2\pi - t))(1 + \cos(3(2\pi - t))) \right\rfloor (-dt) \] This simplifies to: \[ I_2 = \int_{0}^{\pi} \left\lfloor \sin(4\pi - 2t)(1 + \cos(6\pi - 3t)) \right\rfloor dt \] Using properties of sine and cosine: \[ \sin(4\pi - 2t) = -\sin(2t) \quad \text{and} \quad \cos(6\pi - 3t) = -\cos(3t) \] Thus, \[ I_2 = \int_{0}^{\pi} \left\lfloor -\sin(2t)(1 - \cos(3t)) \right\rfloor dt \] ### Step 3: Combine \( I_1 \) and \( I_2 \) Now, we have: \[ I = I_1 + I_2 = \int_{0}^{\pi} \left\lfloor \sin(2x)(1 + \cos(3x)) \right\rfloor \, dx + \int_{0}^{\pi} \left\lfloor -\sin(2x)(1 - \cos(3x)) \right\rfloor \, dx \] ### Step 4: Use the Property of the Greatest Integer Function Using the property of the greatest integer function: \[ \left\lfloor x \right\rfloor + \left\lfloor -x \right\rfloor = -1 \quad \text{(if \( x \) is not an integer)} \] Thus: \[ I = \int_{0}^{\pi} \left( \left\lfloor \sin(2x)(1 + \cos(3x)) \right\rfloor + \left\lfloor -\sin(2x)(1 - \cos(3x)) \right\rfloor \right) dx \] This simplifies to: \[ I = \int_{0}^{\pi} -1 \, dx = -\pi \] ### Final Answer Therefore, the value of the integral is: \[ I = -\pi \]

To solve the integral \( I = \int_{0}^{2\pi} \left\lfloor \sin(2x)(1 + \cos(3x)) \right\rfloor \, dx \), we will break it down step by step. ### Step 1: Split the Integral We can split the integral into two parts: \[ I = \int_{0}^{\pi} \left\lfloor \sin(2x)(1 + \cos(3x)) \right\rfloor \, dx + \int_{\pi}^{2\pi} \left\lfloor \sin(2x)(1 + \cos(3x)) \right\rfloor \, dx \] Let: ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST -14

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 7|JEE - 2020

    VMC MODULES ENGLISH|Exercise Mathematics (Section - 2) Numercial type questions|5 Videos
  • JEE MAIN REVISION TEST -17 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-2)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes greatest integer function is

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

The value of int_(0)^(pi//2) (x+sin x)/(1+cos x)dx , is

int_(0)^(pi) x sin x cos^(2)x\ dx

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(0)^(2pi) |cos x -sin x|dx is

The value of int_(-20pi)^(20 pi) |sin x| [ sin x] dx is (where [.] denotes greatest integer function)

int_(0)^(pi//2) x sin x cos x dx