Home
Class 12
MATHS
The sum (3 xx 1^(3))/(1^(2)) + (5 xx (1^...

The sum `(3 xx 1^(3))/(1^(2)) + (5 xx (1^(3) + 2^(3)))/(1^(2) + 2^(2)) + (7 xx (1^(3) + 2^(3) + 3^(3)))/(1^(2) +2^(2) + 3^(2))...` upto 10th term is

A

680

B

620

C

660

D

600

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series, we need to find the sum of the series up to the 10th term: \[ S = \sum_{n=1}^{10} \frac{(2n + 1) \cdot \sum_{k=1}^{n} k^3}{\sum_{k=1}^{n} k^2} \] ### Step 1: Identify the general term The general term of the series can be expressed as: \[ T_n = \frac{(2n + 1) \cdot \sum_{k=1}^{n} k^3}{\sum_{k=1}^{n} k^2} \] ### Step 2: Use formulas for the sums We know the formulas for the sums of cubes and squares: 1. The sum of the first \( n \) cubes is given by: \[ \sum_{k=1}^{n} k^3 = \left( \frac{n(n + 1)}{2} \right)^2 \] 2. The sum of the first \( n \) squares is given by: \[ \sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6} \] ### Step 3: Substitute the formulas into the general term Substituting these formulas into \( T_n \): \[ T_n = \frac{(2n + 1) \cdot \left( \frac{n(n + 1)}{2} \right)^2}{\frac{n(n + 1)(2n + 1)}{6}} \] ### Step 4: Simplify the expression Now, simplify \( T_n \): \[ T_n = \frac{(2n + 1) \cdot \frac{n^2(n + 1)^2}{4}}{\frac{n(n + 1)(2n + 1)}{6}} \] Cancelling out \( (2n + 1) \), \( n \), and \( n + 1 \): \[ T_n = \frac{6n(n + 1)}{4} = \frac{3n(n + 1)}{2} \] ### Step 5: Find the total sum Now, we need to find the sum \( S \): \[ S = \sum_{n=1}^{10} T_n = \sum_{n=1}^{10} \frac{3n(n + 1)}{2} \] ### Step 6: Split the summation This can be split into two separate summations: \[ S = \frac{3}{2} \sum_{n=1}^{10} n^2 + \frac{3}{2} \sum_{n=1}^{10} n \] ### Step 7: Use formulas for summations Using the formulas for the sums: 1. The sum of the first \( n \) natural numbers: \[ \sum_{k=1}^{n} k = \frac{n(n + 1)}{2} \] 2. The sum of the squares of the first \( n \) natural numbers: \[ \sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6} \] ### Step 8: Substitute \( n = 10 \) Calculating these for \( n = 10 \): \[ \sum_{k=1}^{10} k = \frac{10 \cdot 11}{2} = 55 \] \[ \sum_{k=1}^{10} k^2 = \frac{10 \cdot 11 \cdot 21}{6} = 385 \] ### Step 9: Substitute back into the sum Now substituting back into \( S \): \[ S = \frac{3}{2} \cdot 385 + \frac{3}{2} \cdot 55 = \frac{3}{2} (385 + 55) = \frac{3}{2} \cdot 440 = 660 \] ### Final Answer Thus, the sum of the series up to the 10th term is: \[ \boxed{660} \]

To solve the given series, we need to find the sum of the series up to the 10th term: \[ S = \sum_{n=1}^{10} \frac{(2n + 1) \cdot \sum_{k=1}^{n} k^3}{\sum_{k=1}^{n} k^2} \] ### Step 1: Identify the general term ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST -14

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 7|JEE - 2020

    VMC MODULES ENGLISH|Exercise Mathematics (Section - 2) Numercial type questions|5 Videos
  • JEE MAIN REVISION TEST -17 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Sum of first 20 terms of 3/1^2 + 5/(1^2 + 2^2) + 7/(1^2 + 2^2 + 3^2) +... upto 20 terms is :

The sum of the series 1+ 2/3+ (1)/(3 ^(2)) + (2 )/(3 ^(3)) + (1)/(3 ^(4)) + (2)/(3 ^(5)) + (1)/(3 ^(6))+ (2)/(3 ^(7))+ …… upto infinite terms is equal to :

the sum 3/1^2+5/(1^2+2^2)+7/(1^2+2^2+3^2)+....... upto 11 terms

(1 2/3)^2 + (2 1/3)^2 + 3^2 + (3 2/3)^2 + ….to 10 terms , the sum is :

Let H_(n)=1+(1)/(2)+(1)/(3)+ . . . . .+(1)/(n) , then the sum to n terms of the series (1^(2))/(1^(3))+(1^(2)+2^(2))/(1^(3)+2^(3))+(1^(2)+2^(2)+3^(2))/(1^(3)+2^(3)+3^(3))+ . . . , is

Evaluate : ((1)/(4)) ^(-2) - 3 (32)^((2)/(5)) xx ( 7) ^(0) +((9)/(16))^(-(1)/(2))

Evaluate : a. (-1)^(7) b. (-1)^(10) c. (-3)^(3)xx(-2)^(2) d. (-3)^(4)

Sum of the n terms of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(3))+"......." is

The sum up to 60 terms of 3/(1^2) + 5/(1^2 + 2^2) + 7/(1^2 + 2^2 + 3^2) + ……. is equal to

Simplify : e. 5 (1)/(3) xx (3)/(8) - (7)/(9) div 2 (1)/(10)