Home
Class 12
MATHS
"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"...

`"If" int(dx)/((x^(2)-2x+10)^(2))=A("tan"^(-1)((x-1)/(3))+(f(x))/(x^(2)-2x+10))+C`,where, C is a constant of integration, then

A

1.) `A=1/54` and `f(x) = 9(x-1)^(2)`

B

2) `A=1/27` and `f(x) =9(x-1)`

C

3) `A=1/81` and `f(x) = 3(x-1)`

D

4) `A=1/54` and `f(x) =3(x-1)`

Text Solution

Verified by Experts

The correct Answer is:
D

`int(dx)/(x^(2)-2x+10)^(2)`
Let `x-1=t, dx=dt`
`int(dt)/(t^(2)+9)^(2)`
Now, `int1.(dt)/(t^(2)+9) =1/3 tan^(-1) t/3+c`……………….(1)
Applying integration by parts on L.H.S of (1)
`t/(t^(2)+9) +2 int t^(2)/(t^(2)+9)^(2) dt = 1/3 tan^(-1)t/3 +c`
`t/(t^(2)+9) + 2 int (dt)/(t^(2)+9) - 18int(dt)/(t^(2)+9)^(2) =1/3 tan^(-1) t/3 + c rArr int (dt)/(t^(2)+9)^(2) = 1/54 tan^(-1) tan^(-1) t/3 (3t)/(54(t^(2)+9) +c`
Now put t=x-1
`int(dx)/(x^(2)-2x+10)^(2) = 1/54 (tan^(-1)(x-1)/3 + (3(x-1))/(x^(2) -2x+10))+c`
Hence `A=1/5` and `f(x) = 3(x-1)`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST -14

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 7|JEE - 2020

    VMC MODULES ENGLISH|Exercise Mathematics (Section - 2) Numercial type questions|5 Videos
  • JEE MAIN REVISION TEST -17 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C , where C is a constant of integration, then g(-1) is equal to

If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to

If I=int(tan^(-1)(e^(x)))/(e^(x)+e^(-x))dx=([tan^(-1)(f(x))]^(2))/(2)+C (where C is the constant of integration), then the range of y=f(x) AA x in R is

"If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is a constant of integration, then the function f(x) is equal to A. ( 3 ) /( x ^ 3 ) B. - ( 1 ) / ( 2x ^ 3 ) C. - ( 1 ) / ( 2 x ^ 2 ) D. - (1 )/(6x ^ 3 )

If I=int((lnx)^(5))/(sqrt(x^(2)+x^(2)(lnx)^(3)))dx=ksqrt((lnx)^(3)+1)((lnx)^(3)-2)+c (where c is the constant of integration), then 9k is equal to

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

If I=int(dx)/(x^(2)-2x+5)=(1)/(2)tan^(-1)(f(x))+C (where, C is the constant of integration) and f(2)=(1)/(2) , then the maximum value of y=f(sinx)AA x in R is