Home
Class 12
MATHS
Let A(3,0,-1) ,B(2,10,6) and C(1,2,1) be...

Let A(3,0,-1) ,B(2,10,6) and C(1,2,1) be the vertices of a triangle and M be the mid- point of AC.
If G divides BM in the ratio `2:1` then cos `( angle GOA)` (O being the origin) is equal to

A

`1/(2sqrt(15))`

B

`1/sqrt(30)`

C

`1/sqrt(15)`

D

`1/(6sqrt(10))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Find the coordinates of the midpoint M of AC The coordinates of points A, B, and C are given as: - A(3, 0, -1) - B(2, 10, 6) - C(1, 2, 1) The midpoint M of AC can be calculated using the formula: \[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2} \right) \] Substituting the coordinates of A and C: \[ M = \left( \frac{3 + 1}{2}, \frac{0 + 2}{2}, \frac{-1 + 1}{2} \right) = \left( \frac{4}{2}, \frac{2}{2}, \frac{0}{2} \right) = (2, 1, 0) \] ### Step 2: Find the coordinates of point G that divides BM in the ratio 2:1 Using the section formula, the coordinates of point G dividing the line segment BM in the ratio 2:1 can be calculated as: \[ G = \left( \frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}, \frac{mz_2 + nz_1}{m+n} \right) \] where \( B(2, 10, 6) \) is \( (x_1, y_1, z_1) \) and \( M(2, 1, 0) \) is \( (x_2, y_2, z_2) \), and \( m = 2, n = 1 \). Calculating the coordinates of G: \[ G = \left( \frac{2 \cdot 2 + 1 \cdot 2}{2 + 1}, \frac{2 \cdot 1 + 1 \cdot 10}{2 + 1}, \frac{2 \cdot 0 + 1 \cdot 6}{2 + 1} \right) \] \[ G = \left( \frac{4 + 2}{3}, \frac{2 + 10}{3}, \frac{0 + 6}{3} \right) = \left( \frac{6}{3}, \frac{12}{3}, \frac{6}{3} \right) = (2, 4, 2) \] ### Step 3: Find vectors OA and OG The vector \( \vec{OA} \) from the origin O(0, 0, 0) to A(3, 0, -1) is: \[ \vec{OA} = 3\hat{i} + 0\hat{j} - 1\hat{k} \] The vector \( \vec{OG} \) from the origin O(0, 0, 0) to G(2, 4, 2) is: \[ \vec{OG} = 2\hat{i} + 4\hat{j} + 2\hat{k} \] ### Step 4: Calculate the dot product \( \vec{OA} \cdot \vec{OG} \) \[ \vec{OA} \cdot \vec{OG} = (3)(2) + (0)(4) + (-1)(2) = 6 + 0 - 2 = 4 \] ### Step 5: Find the magnitudes of \( \vec{OA} \) and \( \vec{OG} \) The magnitude of \( \vec{OA} \) is: \[ |\vec{OA}| = \sqrt{3^2 + 0^2 + (-1)^2} = \sqrt{9 + 0 + 1} = \sqrt{10} \] The magnitude of \( \vec{OG} \) is: \[ |\vec{OG}| = \sqrt{2^2 + 4^2 + 2^2} = \sqrt{4 + 16 + 4} = \sqrt{24} = 2\sqrt{6} \] ### Step 6: Calculate \( \cos(\angle GOA) \) Using the formula for the cosine of the angle between two vectors: \[ \cos(\angle GOA) = \frac{\vec{OA} \cdot \vec{OG}}{|\vec{OA}| |\vec{OG}|} \] Substituting the values: \[ \cos(\angle GOA) = \frac{4}{\sqrt{10} \cdot 2\sqrt{6}} = \frac{4}{2\sqrt{60}} = \frac{2}{\sqrt{60}} = \frac{2}{2\sqrt{15}} = \frac{1}{\sqrt{15}} \] ### Final Answer Thus, the value of \( \cos(\angle GOA) \) is: \[ \boxed{\frac{1}{\sqrt{15}}} \]

To solve the problem, we will follow these steps: ### Step 1: Find the coordinates of the midpoint M of AC The coordinates of points A, B, and C are given as: - A(3, 0, -1) - B(2, 10, 6) - C(1, 2, 1) ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST -14

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 7|JEE - 2020

    VMC MODULES ENGLISH|Exercise Mathematics (Section - 2) Numercial type questions|5 Videos
  • JEE MAIN REVISION TEST -17 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The points A(3,1) , B (12,-2) and C(0,2) cannot be vertices of a triangle.

Let A(0,beta), B(-2,0) and C(1,1) be the vertices of a triangle. Then Angle A of the triangle ABC will be obtuse if beta lies in

A(-1, 3), B(4, 2) and C(3, -2) are the vertices of a triangle. Find the coordinates of the centroid G of the triangle.

The points A(3,0) , B (a, -2) and C(4, -1) are the vertices of triangle ABC right angled at vertex A. Find the value of a.

A(6,1) , B (8,2) and C (9,4) are three vertices of a parallelogram ABCD . If E is the mid - point of DC , then find the area of triangle ADE.

Let A(1, 2, 3), B(0, 0, 1) and C(-1, 1, 1) are the vertices of triangleABC . Q. The area of (triangleABC) is equal to

A(-1, 3), B(4, 2) and C(3, -2) are the vertices of a triangle. Find the equation of the line through G and parallel to AC.

A (5, 3), B (-1, 1) and C (7, -3) are the vertices of triangle ABC. If L is the mid-point of AB and M is the mid-point of AC, show that : LM = (1)/(2) BC .

Prove that the points A(1,−3),B(−3,0) and C(4,1) are the vertices of a right angled Isosceles triangle

If (0,1/2),(1/2,1/2) and (1/2,0) are the mid points of sides of triangle then find the incentre of the triangle.