Home
Class 12
MATHS
If Delta(1) =|{:(x, sin theta, cos theta...

If `Delta_(1) =|{:(x, sin theta, cos theta),(-sin theta, -x, 1),(cos theta, 1,x):}|` and `Delta_(2) =|{:(x, sin 2theta, cos 2theta),(-sin 2theta, -x, 1),(cos 2theta, 1,x):}|, x ne 0`, then for all `theta in (0, pi/2)`, Then, `Delta_(1) + Delta_(2) =-2x^(k)`. The value of k is ________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinants \( \Delta_1 \) and \( \Delta_2 \) and then find the value of \( k \) such that \( \Delta_1 + \Delta_2 = -2x^k \). ### Step 1: Calculate \( \Delta_1 \) Given: \[ \Delta_1 = \begin{vmatrix} x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x \end{vmatrix} \] Using the determinant formula for a 3x3 matrix, we can expand \( \Delta_1 \): \[ \Delta_1 = x \begin{vmatrix} -x & 1 \\ 1 & x \end{vmatrix} - \sin \theta \begin{vmatrix} -\sin \theta & 1 \\ \cos \theta & x \end{vmatrix} + \cos \theta \begin{vmatrix} -\sin \theta & -x \\ \cos \theta & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} -x & 1 \\ 1 & x \end{vmatrix} = -x^2 - 1 \) 2. \( \begin{vmatrix} -\sin \theta & 1 \\ \cos \theta & x \end{vmatrix} = -\sin \theta \cdot x - \cos \theta \cdot 1 = -x \sin \theta - \cos \theta \) 3. \( \begin{vmatrix} -\sin \theta & -x \\ \cos \theta & 1 \end{vmatrix} = -\sin \theta \cdot 1 - (-x) \cdot \cos \theta = -\sin \theta + x \cos \theta \) Substituting back into the determinant: \[ \Delta_1 = x(-x^2 - 1) + \sin \theta (x \sin \theta + \cos \theta) + \cos \theta (-\sin \theta + x \cos \theta) \] \[ = -x^3 - x + x \sin^2 \theta + \sin \theta \cos \theta - \cos \theta \sin \theta + x \cos^2 \theta \] \[ = -x^3 - x + x(\sin^2 \theta + \cos^2 \theta) \] Using \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \Delta_1 = -x^3 - x + x = -x^3 \] ### Step 2: Calculate \( \Delta_2 \) Given: \[ \Delta_2 = \begin{vmatrix} x & \sin 2\theta & \cos 2\theta \\ -\sin 2\theta & -x & 1 \\ \cos 2\theta & 1 & x \end{vmatrix} \] Following similar steps as above: \[ \Delta_2 = x \begin{vmatrix} -x & 1 \\ 1 & x \end{vmatrix} - \sin 2\theta \begin{vmatrix} -\sin 2\theta & 1 \\ \cos 2\theta & x \end{vmatrix} + \cos 2\theta \begin{vmatrix} -\sin 2\theta & -x \\ \cos 2\theta & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} -x & 1 \\ 1 & x \end{vmatrix} = -x^2 - 1 \) 2. \( \begin{vmatrix} -\sin 2\theta & 1 \\ \cos 2\theta & x \end{vmatrix} = -\sin 2\theta \cdot x - \cos 2\theta \cdot 1 = -x \sin 2\theta - \cos 2\theta \) 3. \( \begin{vmatrix} -\sin 2\theta & -x \\ \cos 2\theta & 1 \end{vmatrix} = -\sin 2\theta \cdot 1 - (-x) \cdot \cos 2\theta = -\sin 2\theta + x \cos 2\theta \) Substituting back into the determinant: \[ \Delta_2 = x(-x^2 - 1) + \sin 2\theta (x \sin 2\theta + \cos 2\theta) + \cos 2\theta (-\sin 2\theta + x \cos 2\theta) \] \[ = -x^3 - x + x \sin^2 2\theta + \sin 2\theta \cos 2\theta - \cos 2\theta \sin 2\theta + x \cos^2 2\theta \] \[ = -x^3 - x + x(\sin^2 2\theta + \cos^2 2\theta) \] Using \( \sin^2 2\theta + \cos^2 2\theta = 1 \): \[ \Delta_2 = -x^3 - x + x = -x^3 \] ### Step 3: Combine \( \Delta_1 \) and \( \Delta_2 \) Now we add \( \Delta_1 \) and \( \Delta_2 \): \[ \Delta_1 + \Delta_2 = -x^3 - x^3 = -2x^3 \] ### Step 4: Find the value of \( k \) From the expression \( \Delta_1 + \Delta_2 = -2x^k \), we have: \[ -2x^3 = -2x^k \] Thus, \( k = 3 \). ### Final Answer The value of \( k \) is \( \boxed{3} \).

To solve the problem, we need to evaluate the determinants \( \Delta_1 \) and \( \Delta_2 \) and then find the value of \( k \) such that \( \Delta_1 + \Delta_2 = -2x^k \). ### Step 1: Calculate \( \Delta_1 \) Given: \[ \Delta_1 = \begin{vmatrix} x & \sin \theta & \cos \theta \\ ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST -14

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 7|JEE - 2020

    VMC MODULES ENGLISH|Exercise Mathematics (Section - 2) Numercial type questions|5 Videos
  • JEE MAIN REVISION TEST -17 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Prove that the determinant Delta =|{:(x,,sintheta,,cos theta),(-sin theta,,-x,,1),(cos theta,,1,,x):}| is independent of theta .

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

Prove that the determinant |(x,sin theta,cos theta),(-sin theta,-x,1),(cos theta,1,x)| is independent of theta

If x= a sin 2theta (1+ cos 2theta) , y= b cos 2theta(1- cos 2theta) , then (dy)/(dx) =

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

Prove that: (a) (sin 2 theta)/(1+cos 2 theta)=tan theta (b) (1+sin 2 theta+cos 2theta)/(1+sin2 theta-cos 2 theta)=cot theta

Prove : (1+sin2theta-cos2theta)/(1+sin2theta+cos2theta)=tantheta

Prove that : (1+ sin theta - cos theta) / (1+ sin theta + cos theta ) = tan (theta/2)

Prove : (cos theta)/(1+sin theta) + (cos theta)/(1-sin theta)= 2 sec theta

Prove that: (1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=cot theta