Home
Class 12
MATHS
If a gt 0 and z=(1+i)^2/(a-i) has magni...

If `a gt 0 and z=(1+i)^2/(a-i)` has magnitude `sqrt(2/5) "then " bar z is ` equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Write the expression for \( z \) Given: \[ z = \frac{(1 + i)^2}{a - i} \] We will first simplify the numerator. ### Step 2: Simplify the numerator Using the formula for the square of a binomial: \[ (1 + i)^2 = 1^2 + 2 \cdot 1 \cdot i + i^2 = 1 + 2i - 1 = 2i \] Thus, we can rewrite \( z \): \[ z = \frac{2i}{a - i} \] ### Step 3: Rationalize the denominator To rationalize the denominator, multiply the numerator and denominator by the conjugate of the denominator: \[ z = \frac{2i(a + i)}{(a - i)(a + i)} = \frac{2i(a + i)}{a^2 + 1} \] Now, simplify the numerator: \[ z = \frac{2ai + 2i^2}{a^2 + 1} = \frac{2ai - 2}{a^2 + 1} = \frac{-2 + 2ai}{a^2 + 1} \] ### Step 4: Separate real and imaginary parts From the expression: \[ z = \frac{-2}{a^2 + 1} + \frac{2a}{a^2 + 1}i \] Let \( x = \frac{-2}{a^2 + 1} \) and \( y = \frac{2a}{a^2 + 1} \). ### Step 5: Find the magnitude of \( z \) The magnitude of \( z \) is given by: \[ |z| = \sqrt{x^2 + y^2} \] Substituting \( x \) and \( y \): \[ |z| = \sqrt{\left(\frac{-2}{a^2 + 1}\right)^2 + \left(\frac{2a}{a^2 + 1}\right)^2} \] This simplifies to: \[ |z| = \sqrt{\frac{4 + 4a^2}{(a^2 + 1)^2}} = \frac{2\sqrt{1 + a^2}}{a^2 + 1} \] ### Step 6: Set the magnitude equal to \( \sqrt{\frac{2}{5}} \) We know: \[ \frac{2\sqrt{1 + a^2}}{a^2 + 1} = \sqrt{\frac{2}{5}} \] Squaring both sides: \[ \frac{4(1 + a^2)}{(a^2 + 1)^2} = \frac{2}{5} \] Cross-multiplying gives: \[ 20(1 + a^2) = 2(a^2 + 1)^2 \] ### Step 7: Expand and simplify Expanding the right side: \[ 20 + 20a^2 = 2(a^4 + 2a^2 + 1) \] This simplifies to: \[ 20 + 20a^2 = 2a^4 + 4a^2 + 2 \] Rearranging gives: \[ 2a^4 - 16a^2 - 18 = 0 \] Dividing by 2: \[ a^4 - 8a^2 - 9 = 0 \] ### Step 8: Let \( u = a^2 \) Let \( u = a^2 \): \[ u^2 - 8u - 9 = 0 \] Using the quadratic formula: \[ u = \frac{8 \pm \sqrt{64 + 36}}{2} = \frac{8 \pm 10}{2} \] This gives: \[ u = 9 \quad \text{or} \quad u = -1 \] Since \( u = a^2 \) and must be positive, we have: \[ a^2 = 9 \implies a = 3 \] ### Step 9: Substitute \( a \) back into \( z \) Substituting \( a = 3 \) back into \( z \): \[ z = \frac{-2 + 2(3)i}{3^2 + 1} = \frac{-2 + 6i}{10} = -\frac{1}{5} + \frac{3}{5}i \] ### Step 10: Find the conjugate of \( z \) The conjugate \( \bar{z} \) is: \[ \bar{z} = -\frac{1}{5} - \frac{3}{5}i \] ### Final Answer Thus, the value of \( \bar{z} \) is: \[ \bar{z} = -\frac{1}{5} - \frac{3}{5}i \]

To solve the problem, we will follow these steps: ### Step 1: Write the expression for \( z \) Given: \[ z = \frac{(1 + i)^2}{a - i} \] We will first simplify the numerator. ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST -14

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 7|JEE - 2020

    VMC MODULES ENGLISH|Exercise Mathematics (Section - 2) Numercial type questions|5 Videos
  • JEE MAIN REVISION TEST -17 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If z = ((1+i)^(2))/(alpha-i) , alpha in R has magnitude sqrt((2)/(5)) then the value of alpha is (i) 3 only (ii) -3 only (iii) 3 or -3 (iv) none of these

If z=i^(i^(i)) where i=sqrt-1 then |z| is equal to

If z=ilog_(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

If z = (1)/((2-3i)^(2)) then |z| is equal to

If z = (sqrt(3+i))/2 (where i = sqrt(-1) ) then (z^101 + i^103)^105 is equal to

If i=sqrt(-1) , then (i^(n)+i^(-n), n in Z) is equal to

If i=sqrt(-1) , then (i^(n)+i^(-n), n in Z) is equal to

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

if z = (sqrt 3 ) /(2) + (i)/(2) ( i=sqrt ( -1) ) , then ( 1 + iz + z^5 + iz^8)^9 is equal to:

If |z _1 |= 2 and (1 - i)z_2 + (1+i)barz_2 = 8sqrt2 , then the minimum value of |z_1 - z_2| is ______.