Home
Class 12
MATHS
Sin^(-1)((12)/(13))-sin^(-1)((3)/(5)) is...

`Sin^(-1)((12)/(13))-sin^(-1)((3)/(5))` is equal to

A

`(pi)/(2)-cos^(-1)((9)/(65))`

B

`pi-cos^(-1)((33)/(65))`

C

`(pi)/(2)-sin^(-1)((56)/(65))`

D

`pi-sin^(-1)((63)/(65))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^{-1}\left(\frac{12}{13}\right) - \sin^{-1}\left(\frac{3}{5}\right) \), we can use the formula for the difference of two inverse sine functions: \[ \sin^{-1}(x) - \sin^{-1}(y) = \sin^{-1}\left(x \sqrt{1 - y^2} - y \sqrt{1 - x^2}\right) \] ### Step 1: Identify \( x \) and \( y \) Let: - \( x = \frac{12}{13} \) - \( y = \frac{3}{5} \) ### Step 2: Calculate \( \sqrt{1 - y^2} \) First, we calculate \( \sqrt{1 - y^2} \): \[ y^2 = \left(\frac{3}{5}\right)^2 = \frac{9}{25} \] \[ 1 - y^2 = 1 - \frac{9}{25} = \frac{25 - 9}{25} = \frac{16}{25} \] \[ \sqrt{1 - y^2} = \sqrt{\frac{16}{25}} = \frac{4}{5} \] ### Step 3: Calculate \( \sqrt{1 - x^2} \) Next, we calculate \( \sqrt{1 - x^2} \): \[ x^2 = \left(\frac{12}{13}\right)^2 = \frac{144}{169} \] \[ 1 - x^2 = 1 - \frac{144}{169} = \frac{169 - 144}{169} = \frac{25}{169} \] \[ \sqrt{1 - x^2} = \sqrt{\frac{25}{169}} = \frac{5}{13} \] ### Step 4: Substitute into the formula Now, we substitute \( x \), \( y \), \( \sqrt{1 - y^2} \), and \( \sqrt{1 - x^2} \) into the formula: \[ \sin^{-1}\left(\frac{12}{13} \cdot \frac{4}{5} - \frac{3}{5} \cdot \frac{5}{13}\right) \] Calculating the terms: \[ \frac{12}{13} \cdot \frac{4}{5} = \frac{48}{65} \] \[ \frac{3}{5} \cdot \frac{5}{13} = \frac{15}{65} \] Now, subtract these two results: \[ \frac{48}{65} - \frac{15}{65} = \frac{33}{65} \] ### Step 5: Final result Thus, we have: \[ \sin^{-1}\left(\frac{33}{65}\right) \] ### Conclusion The expression \( \sin^{-1}\left(\frac{12}{13}\right) - \sin^{-1}\left(\frac{3}{5}\right) \) simplifies to: \[ \sin^{-1}\left(\frac{33}{65}\right) \]

To solve the expression \( \sin^{-1}\left(\frac{12}{13}\right) - \sin^{-1}\left(\frac{3}{5}\right) \), we can use the formula for the difference of two inverse sine functions: \[ \sin^{-1}(x) - \sin^{-1}(y) = \sin^{-1}\left(x \sqrt{1 - y^2} - y \sqrt{1 - x^2}\right) \] ### Step 1: Identify \( x \) and \( y \) Let: ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST- 16

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST 8 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2 )|5 Videos
  • JEE MAIN REVISION TEST- 24

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION - 2)|5 Videos

Similar Questions

Explore conceptually related problems

sin(cos^(-1)(3/5)) is equal to

The valueof 2sin^(-1).(4)/(5)+2sin^(-1).(5)/(13)+2sin^(-1).(16)/(65) is equal to

sin^(-1)(cos((5pi)/4)) is equal to

sin^(-1)sin((3pi)/5)

The value of tan^(-1)(1)+cos^(-1)(-1/2)+sin^(-1)(-1/2) is equal to pi/4 b. (5pi)/(12) c. (3pi)/4 d. (13pi)/(12)

sin^(-1)(sin (3 pi)/(5))

sin{2(sin^(-1)(sqrt(5))/3-cos^(-1)(sqrt(5))/3)} is equal to (ksqrt(5))/(81) then k=

sin{2(sin^(-1)(sqrt(5))/3-cos^(-1)(sqrt(5))/3)} is equal to (ksqrt(5))/(81) then k=

Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2

Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2