Home
Class 12
MATHS
If A is a symmetric matrix and B is a sk...

If A is a symmetric matrix and B is a skew-symmetric matrix such that
`A + B = [{:(2,3),(5,-1):}]`, then AB is equal to

A

`[(-4, 2),(1,4)]`

B

`[(4,-2),(-1,-4)]`

C

`[(4, -2),(1,-4)]`

D

`[(-4, -2),(-1, 4)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product \( AB \) given that \( A \) is a symmetric matrix and \( B \) is a skew-symmetric matrix such that \( A + B = \begin{pmatrix} 2 & 3 \\ 5 & -1 \end{pmatrix} \). ### Step 1: Define the matrices Let \( P = A + B \). We know that: \[ P = \begin{pmatrix} 2 & 3 \\ 5 & -1 \end{pmatrix} \] ### Step 2: Express \( A \) and \( B \) Since \( A \) is symmetric and \( B \) is skew-symmetric, we can express them as: \[ A = \frac{1}{2}(P + P^T) \] \[ B = \frac{1}{2}(P - P^T) \] ### Step 3: Calculate \( P^T \) First, we need to find the transpose of \( P \): \[ P^T = \begin{pmatrix} 2 & 5 \\ 3 & -1 \end{pmatrix} \] ### Step 4: Calculate \( A \) Now, we can find \( A \): \[ A = \frac{1}{2} \left( \begin{pmatrix} 2 & 3 \\ 5 & -1 \end{pmatrix} + \begin{pmatrix} 2 & 5 \\ 3 & -1 \end{pmatrix} \right) = \frac{1}{2} \begin{pmatrix} 4 & 8 \\ 8 & -2 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 4 & -1 \end{pmatrix} \] ### Step 5: Calculate \( B \) Next, we find \( B \): \[ B = \frac{1}{2} \left( \begin{pmatrix} 2 & 3 \\ 5 & -1 \end{pmatrix} - \begin{pmatrix} 2 & 5 \\ 3 & -1 \end{pmatrix} \right) = \frac{1}{2} \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \] ### Step 6: Calculate \( AB \) Now we can find the product \( AB \): \[ AB = \begin{pmatrix} 2 & 4 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \] Calculating the product: \[ AB = \begin{pmatrix} 2 \cdot 0 + 4 \cdot 1 & 2 \cdot -1 + 4 \cdot 0 \\ 4 \cdot 0 + (-1) \cdot 1 & 4 \cdot -1 + (-1) \cdot 0 \end{pmatrix} = \begin{pmatrix} 4 & -2 \\ -1 & -4 \end{pmatrix} \] ### Final Result Thus, the product \( AB \) is: \[ AB = \begin{pmatrix} 4 & -2 \\ -1 & -4 \end{pmatrix} \]

To solve the problem, we need to find the product \( AB \) given that \( A \) is a symmetric matrix and \( B \) is a skew-symmetric matrix such that \( A + B = \begin{pmatrix} 2 & 3 \\ 5 & -1 \end{pmatrix} \). ### Step 1: Define the matrices Let \( P = A + B \). We know that: \[ P = \begin{pmatrix} 2 & 3 \\ 5 & -1 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST- 16

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST 8 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2 )|5 Videos
  • JEE MAIN REVISION TEST- 24

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION - 2)|5 Videos

Similar Questions

Explore conceptually related problems

If A is skew-symmetric matrix then A^(2) is a symmetric matrix.

If A is symmetric as well as skew-symmetric matrix, then A is

If A is symmetric as well as skew-symmetric matrix, then A is

If A is a square matrix, then A is skew symmetric if

If A is skew-symmetric matrix, then trace of A is

If A and B are symmetric matrices, prove that AB BA is a skew symmetric matrix.

If A and B are symmetric matrices, prove that AB – BA is a skew symmetric matrix.

A is even ordered non singular symmetric matrix and B is even ordered non singular skew symmetric matrix such that AB = BA, then A^3B^3(B'A)^(-1)(A^(-1)B^(-1))' AB is equal to :

A matrix which is both symmetric and skew-symmetric is a

It A is a symmetric matrix, write whether A^T is symmetric or skew - symmetric matrix.