Home
Class 12
MATHS
If B=[{:(5,2alpha,1),(0,2,1),(alpha,3,-1...

If `B=[{:(5,2alpha,1),(0,2,1),(alpha,3,-1):}]` is the inverse of a `3xx3` matrix A, then the sum of all values of `alpha` for which det `(A)+1=0` is:

A

`-1`

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of all values of \( \alpha \) for which the determinant of matrix \( A \) plus 1 equals zero, given that \( B \) is the inverse of \( A \). ### Step-by-Step Solution: 1. **Identify the Matrix \( B \)**: \[ B = \begin{pmatrix} 5 & 2\alpha & 1 \\ 0 & 2 & 1 \\ \alpha & 3 & -1 \end{pmatrix} \] 2. **Find the Determinant of Matrix \( B \)**: We will calculate the determinant of \( B \) using the formula for the determinant of a \( 3 \times 3 \) matrix: \[ \text{det}(B) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is represented as: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix \( B \): - \( a = 5, b = 2\alpha, c = 1 \) - \( d = 0, e = 2, f = 1 \) - \( g = \alpha, h = 3, i = -1 \) Plugging in these values: \[ \text{det}(B) = 5(2 \cdot (-1) - 1 \cdot 3) - 2\alpha(0 \cdot (-1) - 1 \cdot \alpha) + 1(0 \cdot 3 - 2 \cdot \alpha) \] Simplifying this: \[ = 5(-2 - 3) - 2\alpha(0 - \alpha) + 1(0 - 2\alpha) \] \[ = 5(-5) + 2\alpha^2 - 2\alpha \] \[ = -25 + 2\alpha^2 - 2\alpha \] 3. **Relate Determinant of \( A \) and \( B \)**: Since \( B \) is the inverse of \( A \), we have: \[ \text{det}(A) = \text{det}(B) \] Therefore: \[ \text{det}(A) = -25 + 2\alpha^2 - 2\alpha \] 4. **Set Up the Equation**: We need to find \( \alpha \) such that: \[ \text{det}(A) + 1 = 0 \] Substituting for \( \text{det}(A) \): \[ -25 + 2\alpha^2 - 2\alpha + 1 = 0 \] Simplifying this gives: \[ 2\alpha^2 - 2\alpha - 24 = 0 \] 5. **Divide by 2**: \[ \alpha^2 - \alpha - 12 = 0 \] 6. **Factor the Quadratic**: We can factor this quadratic equation: \[ (\alpha - 4)(\alpha + 3) = 0 \] 7. **Find the Roots**: Setting each factor to zero gives: \[ \alpha - 4 = 0 \quad \Rightarrow \quad \alpha = 4 \] \[ \alpha + 3 = 0 \quad \Rightarrow \quad \alpha = -3 \] 8. **Sum of the Roots**: The sum of the values of \( \alpha \) is: \[ 4 + (-3) = 1 \] ### Final Answer: The sum of all values of \( \alpha \) for which \( \text{det}(A) + 1 = 0 \) is \( \boxed{1} \).

To solve the problem, we need to find the sum of all values of \( \alpha \) for which the determinant of matrix \( A \) plus 1 equals zero, given that \( B \) is the inverse of \( A \). ### Step-by-Step Solution: 1. **Identify the Matrix \( B \)**: \[ B = \begin{pmatrix} 5 & 2\alpha & 1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST- 16

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST 8 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2 )|5 Videos
  • JEE MAIN REVISION TEST- 24

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION - 2)|5 Videos

Similar Questions

Explore conceptually related problems

If B = [{:(5, 2alpha, 1),(0, 2, 1),(alpha, 3, -1):}] is the inverse of a 3 xx 3 matrix A, then the sum of all values of alpha for which det (A) + 1 =0, is

If P=[(1,alpha,3),(1,3,3),(2,4,4)] is the adjoint of a 3 x 3 matrix A and |A| = 4 , then alpha is equal to

Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(1,-2,3)] . If B is the inverse of A, then alpha is :

If P=[1alpha3 1 3 3 2 4 4] is the adjoint of a 3xx3 matrix A and |A|""=""4 , then a is equal to (1) 11 (2) 5 (3) 0 (4) 4

If A=[[alpha,0],[ 1, 1]] and B=[[1, 0],[ 5, 1]], find the values of alpha for which A^2=Bdot

If x=2alpha+1\ a n d\ y=alpha-1 is a solution of the equation 2x-3y+5=0 , find the value of alpha

if alpha , beta be the roots of x^(2) -(a -2) x -a-1 =0 then the least value of alpha^(2) + beta^(2) is (1) 0 (2) 1 (3) 3 (4) 5

If A=[(alpha,0), (1, 1)]a n d B=[(1, 0), (5, 1)], find the values of alpha for which A^2=Bdot

If alpha_(0),alpha_(1),alpha_(2),...,alpha_(n-1) are the n, nth roots of the unity , then find the value of sum_(i=0)^(n-1)(alpha_(i))/(2-a_(i)).

If nge3and1,alpha_(1),alpha_(2),.......,alpha_(n-1) are nth roots of unity then the sum sum_(1leiltjlen-1)alpha_(i)alpha(j)=