Home
Class 12
MATHS
[-(1)/(3)]+[-(1)/(3)-(1)/(100)]+[-(1)/(3...

`[-(1)/(3)]+[-(1)/(3)-(1)/(100)]+[-(1)/(3)-(2)/(100)]+….+[-(1)/(3)-(99)/(100)]` is equal to (where `[.]` denotes greatest integer function)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ [-(1)/(3)] + [-\frac{1}{3} - \frac{1}{100}] + [-\frac{1}{3} - \frac{2}{100}] + \ldots + [-\frac{1}{3} - \frac{99}{100}] \] we will analyze each term step by step. ### Step 1: Identify the general term The general term of the sequence can be expressed as: \[ T_n = -\frac{1}{3} - \frac{n}{100} \] where \( n \) ranges from 0 to 99. ### Step 2: Calculate the first term For \( n = 0 \): \[ T_0 = -\frac{1}{3} - \frac{0}{100} = -\frac{1}{3} \] ### Step 3: Calculate the second term For \( n = 1 \): \[ T_1 = -\frac{1}{3} - \frac{1}{100} = -\frac{100}{300} - \frac{3}{300} = -\frac{103}{300} \] ### Step 4: Calculate the third term For \( n = 2 \): \[ T_2 = -\frac{1}{3} - \frac{2}{100} = -\frac{100}{300} - \frac{6}{300} = -\frac{106}{300} \] ### Step 5: Generalize the term Continuing this pattern, we can see that: \[ T_n = -\frac{100 + 3n}{300} \] ### Step 6: Determine when the greatest integer function changes We need to find when \( T_n \) crosses the integer boundaries. The greatest integer function \( [x] \) will yield different values depending on the value of \( T_n \). 1. For \( n = 0 \) to \( n = 66 \): \[ T_{66} = -\frac{100 + 3 \cdot 66}{300} = -\frac{298}{300} \] This is between -1 and 0, so: \[ [T_n] = -1 \quad \text{for } n = 0 \text{ to } 66 \] 2. For \( n = 67 \): \[ T_{67} = -\frac{100 + 3 \cdot 67}{300} = -\frac{301}{300} \] This is less than -1, so: \[ [T_{67}] = -2 \] ### Step 7: Count the contributions - From \( n = 0 \) to \( n = 66 \) (67 terms), each contributes -1: \[ 67 \times (-1) = -67 \] - From \( n = 67 \) to \( n = 99 \) (33 terms), each contributes -2: \[ 33 \times (-2) = -66 \] ### Step 8: Sum the contributions Now, we can sum the contributions: \[ -67 + (-66) = -133 \] ### Final Answer Thus, the value of the given expression is: \[ \boxed{-133} \]

To solve the expression \[ [-(1)/(3)] + [-\frac{1}{3} - \frac{1}{100}] + [-\frac{1}{3} - \frac{2}{100}] + \ldots + [-\frac{1}{3} - \frac{99}{100}] \] we will analyze each term step by step. ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST- 16

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST 8 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2 )|5 Videos
  • JEE MAIN REVISION TEST- 24

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION - 2)|5 Videos

Similar Questions

Explore conceptually related problems

x→1 lim ​ (1−x+[x−1]+[1−x]) is equal to (where [.] denotes greatest integer function)

The value of int_(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] denotes the greatest integer function)

lim_(xrarr(-1)/(3)) (1)/(x)[(-1)/(x)]= (where [.] denotes the greatest integer function)

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

Let E = [(1)/(3) + (1)/(50)]+[(1)/(3)+(2)/(50)]+[(1)/(3)+(3)/(50)]+…….. upto 50 terms where [.] denotes the greatest integer terms then

If x = (1 ^(2))/(1) =+ (2 ^(2))/( 3) + (3 ^(2))/( 5) +.....+ (1001 ^(2))/( 2001) , y = (1^(2))/(3) + (2 ^(2))/( 5) + (3 ^(2))/(7) + .....+ (1001 ^(2))/(2003), then ([x -y])/(10) is equal to where [.] denotes greatest integer function)

If x=10 sum_(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] denotes gratest integer function)

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(1+cotx)) is equal to (where, [.] denotes the greatest integer function )

Evaluate int_(0)^(oo)[(3)/(x^(2)+1)]dx where [.] denotes the greatest integer function.

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to