Home
Class 12
MATHS
The acute angle between F(1)(x)=int(2)^...

The acute angle between `F_(1)(x)=int_(2)^(x) (2t-5)dt and F_(2)(x)=int_(0)^(x)2t dt," is , if "tantheta=a/b` where a, b are co-prime numbers then b – a is:

Text Solution

AI Generated Solution

The correct Answer is:
To find the acute angle between the functions \( F_1(x) \) and \( F_2(x) \), we will follow these steps: ### Step 1: Define the Functions We have: \[ F_1(x) = \int_{2}^{x} (2t - 5) \, dt \] \[ F_2(x) = \int_{0}^{x} 2t \, dt \] ### Step 2: Calculate \( F_1(x) \) To compute \( F_1(x) \): \[ F_1(x) = \left[ t^2 - 5t \right]_{2}^{x} = \left( x^2 - 5x \right) - \left( 2^2 - 5 \cdot 2 \right) \] Calculating the lower limit: \[ 2^2 - 5 \cdot 2 = 4 - 10 = -6 \] Thus, \[ F_1(x) = x^2 - 5x + 6 \] ### Step 3: Calculate \( F_2(x) \) To compute \( F_2(x) \): \[ F_2(x) = \left[ t^2 \right]_{0}^{x} = x^2 - 0 = x^2 \] ### Step 4: Find the Intersection Point Set \( F_1(x) = F_2(x) \): \[ x^2 - 5x + 6 = x^2 \] This simplifies to: \[ -5x + 6 = 0 \implies x = \frac{6}{5} \] ### Step 5: Calculate the y-coordinate at the Intersection Substituting \( x = \frac{6}{5} \) into \( F_2(x) \): \[ y = F_2\left(\frac{6}{5}\right) = \left(\frac{6}{5}\right)^2 = \frac{36}{25} \] Thus, the intersection point is \( P\left(\frac{6}{5}, \frac{36}{25}\right) \). ### Step 6: Find the Slopes \( m_1 \) and \( m_2 \) Calculate the derivatives: \[ F_1'(x) = 2x - 5 \quad \text{and} \quad F_2'(x) = 2x \] Now, evaluate at \( x = \frac{6}{5} \): \[ m_1 = F_1'\left(\frac{6}{5}\right) = 2\left(\frac{6}{5}\right) - 5 = \frac{12}{5} - 5 = \frac{12}{5} - \frac{25}{5} = -\frac{13}{5} \] \[ m_2 = F_2'\left(\frac{6}{5}\right) = 2\left(\frac{6}{5}\right) = \frac{12}{5} \] ### Step 7: Calculate \( \tan \theta \) Using the formula for the tangent of the angle between two curves: \[ \tan \theta = \frac{|m_1 - m_2|}{1 + m_1 m_2} \] Substituting \( m_1 \) and \( m_2 \): \[ \tan \theta = \frac{\left| -\frac{13}{5} - \frac{12}{5} \right|}{1 + \left(-\frac{13}{5}\right)\left(\frac{12}{5}\right)} \] Calculating the numerator: \[ -\frac{13}{5} - \frac{12}{5} = -\frac{25}{5} = -5 \implies | -5 | = 5 \] Calculating the denominator: \[ 1 - \frac{156}{25} = \frac{25 - 156}{25} = -\frac{131}{25} \] Thus, \[ \tan \theta = \frac{5}{-\frac{131}{25}} = \frac{5 \cdot 25}{-131} = -\frac{125}{131} \] Taking the absolute value: \[ \tan \theta = \frac{125}{131} \] ### Step 8: Identify \( a \) and \( b \) From \( \tan \theta = \frac{a}{b} \): - \( a = 125 \) - \( b = 131 \) ### Step 9: Calculate \( b - a \) \[ b - a = 131 - 125 = 6 \] ### Final Answer Thus, the value of \( b - a \) is: \[ \boxed{6} \]

To find the acute angle between the functions \( F_1(x) \) and \( F_2(x) \), we will follow these steps: ### Step 1: Define the Functions We have: \[ F_1(x) = \int_{2}^{x} (2t - 5) \, dt \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST -14

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST 11 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION - 2)|4 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = int_(0)^(x)|2t-3|dt , then f is

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

If f(x)=int_0^x tf(t)dt+2, then

If f(x)=int_(0)^(x)|t-1|dt , where 0lexle2 , then

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If int_(0)^(x) f(t)dt=x^(2)+2x-int_(0)^(x) tf(t)dt, x in (0,oo) . Then, f(x) is

Let f(x) = int_(-2)^(x)|t + 1|dt , then

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

VMC MODULES ENGLISH-JEE MAIN REVISION TEST -17 (2020)-MATHEMATICS
  1. For A=133^(@), 2cos\ A/2is equal to

    Text Solution

    |

  2. Let S be the set of all real numbers and Let R be a relations on s...

    Text Solution

    |

  3. Negation of the conditional, ..If it rains, I shall go to school.. is:

    Text Solution

    |

  4. The value of lambda, for which the line 2x - (8)/(3) lambda y =- 3 is ...

    Text Solution

    |

  5. If |(1+sin^2 theta,sin^2 theta,sin^2 theta),(cos^2 theta,1+cos^2 theta...

    Text Solution

    |

  6. The product of n consecutive natural numbers is always divisible by

    Text Solution

    |

  7. In a triangle ABC, if sin A sin B= (ab)/(c^(2)), then the triangle is ...

    Text Solution

    |

  8. The area enclosed by the curve y=sinx+cosxa n dy=|cosx-sinx| over the ...

    Text Solution

    |

  9. Let f(x)={{:(,x^(n)sin\ (1)/(x),x ne 0),(,0,x=0):} Then f(x) is contin...

    Text Solution

    |

  10. Solve: {(xy)cos(xy)+sin(xy)}dx+x^2cos(xy)dy=0

    Text Solution

    |

  11. If veca,vecb and vecc are non coplanar and unit vectors such that veca...

    Text Solution

    |

  12. the image of the point (-1,3,4) in the plane x-2y=0 a.(-(17)/(3),(19)/...

    Text Solution

    |

  13. If the letters of the word SACHIN are arranged in all possible ways...

    Text Solution

    |

  14. If H(1) and H(2) are two harmonic means between two positive numbers a...

    Text Solution

    |

  15. A point P moves in such a way that the ratio of its distance from two ...

    Text Solution

    |

  16. If the shortest distance between the lines (x-3)/(3)=(y-8)/(-1)=(z-3)/...

    Text Solution

    |

  17. The probability of a bomb hitting a bridge is 1/2 and two direct hits ...

    Text Solution

    |

  18. Find the minimum value of |x|+|x+1/2|+|x-3|+|x-5/2|dot

    Text Solution

    |

  19. If the slope of one of the lines represented by ax^(2)+2hxy+by^(2)=0 ...

    Text Solution

    |

  20. The acute angle between F(1)(x)=int(2)^(x) (2t-5)dt and F(2)(x)=int(...

    Text Solution

    |