Home
Class 12
MATHS
If 'z, lies on the circle |z-2i|=2sqrt...

If 'z, lies on the circle `|z-2i|=2sqrt2`, then the value of `arg((z-2)/(z+2))` is the equal to

A

`(pi)/(3)`

B

`(pi)/(4)`

C

`(pi)/(6)`

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \arg\left(\frac{z-2}{z+2}\right) \) given that \( |z - 2i| = 2\sqrt{2} \). ### Step-by-Step Solution: 1. **Understand the Circle Equation**: The equation \( |z - 2i| = 2\sqrt{2} \) represents a circle in the complex plane with center at \( 2i \) (which corresponds to the point \( (0, 2) \) in Cartesian coordinates) and a radius of \( 2\sqrt{2} \). 2. **Express \( z \) in Terms of \( x \) and \( y \)**: Let \( z = x + iy \). Then, the equation of the circle can be rewritten as: \[ |(x + iy) - 2i| = 2\sqrt{2} \implies |x + i(y - 2)| = 2\sqrt{2} \] This implies: \[ \sqrt{x^2 + (y - 2)^2} = 2\sqrt{2} \] Squaring both sides gives: \[ x^2 + (y - 2)^2 = 8 \] 3. **Find the Argument**: We need to calculate \( \arg\left(\frac{z - 2}{z + 2}\right) \). Using the property of arguments, we have: \[ \arg\left(\frac{z - 2}{z + 2}\right) = \arg(z - 2) - \arg(z + 2) \] 4. **Calculate \( z - 2 \) and \( z + 2 \)**: \[ z - 2 = (x - 2) + iy \] \[ z + 2 = (x + 2) + iy \] 5. **Find the Arguments**: Using the formula for the argument of a complex number \( a + bi \): \[ \arg(z - 2) = \tan^{-1}\left(\frac{y}{x - 2}\right) \] \[ \arg(z + 2) = \tan^{-1}\left(\frac{y}{x + 2}\right) \] 6. **Combine the Arguments**: Thus, we have: \[ \arg\left(\frac{z - 2}{z + 2}\right) = \tan^{-1}\left(\frac{y}{x - 2}\right) - \tan^{-1}\left(\frac{y}{x + 2}\right) \] 7. **Use the Tangent Difference Formula**: The formula for the difference of two arctangents is: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \] where \( a = \frac{y}{x - 2} \) and \( b = \frac{y}{x + 2} \). 8. **Substituting Values**: Substitute \( a \) and \( b \) into the formula: \[ \arg\left(\frac{z - 2}{z + 2}\right) = \tan^{-1}\left(\frac{\frac{y}{x - 2} - \frac{y}{x + 2}}{1 + \frac{y^2}{(x - 2)(x + 2)}}\right) \] 9. **Simplify**: The numerator simplifies to: \[ \frac{y\left((x + 2) - (x - 2)\right)}{(x - 2)(x + 2)} = \frac{4y}{(x - 2)(x + 2)} \] The denominator simplifies to: \[ 1 + \frac{y^2}{(x - 2)(x + 2)} = \frac{(x - 2)(x + 2) + y^2}{(x - 2)(x + 2)} = \frac{x^2 + y^2 - 4}{(x - 2)(x + 2)} \] 10. **Final Argument**: After simplification, we find that: \[ \arg\left(\frac{z - 2}{z + 2}\right) = \tan^{-1}(1) = \frac{\pi}{4} \] ### Conclusion: The value of \( \arg\left(\frac{z - 2}{z + 2}\right) \) is \( \frac{\pi}{4} \).

To solve the problem, we need to find the value of \( \arg\left(\frac{z-2}{z+2}\right) \) given that \( |z - 2i| = 2\sqrt{2} \). ### Step-by-Step Solution: 1. **Understand the Circle Equation**: The equation \( |z - 2i| = 2\sqrt{2} \) represents a circle in the complex plane with center at \( 2i \) (which corresponds to the point \( (0, 2) \) in Cartesian coordinates) and a radius of \( 2\sqrt{2} \). 2. **Express \( z \) in Terms of \( x \) and \( y \)**: ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 1 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 1 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos
  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos

Similar Questions

Explore conceptually related problems

If z lies on the circle |z-1|=1 , then (z-2)/z is

If z lies on the circle |z-1|=1 , then (z-2)/z is

If z lies on the circle I z l = 1, then 2/z lies on

If zinC lies on the circle whose equation is |z-3i|=3sqrt2. then the argument of ((z-3)/(z+3)) can be

If z = (-4 +2 sqrt3i)/(5 +sqrt3i) , then the value of arg(z) is

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

Complex numbers z_(1) and z_(2) lie on the rays arg(z1) =theta and arg(z1) =-theta such that |z_(1)|=|z_(2)| . Further, image of z_(1) in y-axis is z_(3) . Then, the value of arg (z_(1)z_(3)) is equal to

For z= sqrt3-i , find the principal, value arg(z)

If z= -3 + sqrt2i , then prove that z^(4) + 5z^(3) + 8z^(2) + 7z + 4 is equal to -29