Home
Class 12
MATHS
Find the coefficients of x^(50) in the e...

Find the coefficients of `x^(50)` in the expression `(1+x)^(1000)+2x(1+x)^(999)+3x^2(1+x)^(998)++1001 x^(1000)` .

A

`""^(1000)C_(50)`

B

`""^(1001)C_(50)`

C

`""^(1002)C_(50)`

D

`2^(1001)`

Text Solution

Verified by Experts

The correct Answer is:
C

Let, `S=(1+x)^(1000)+2x(1+x)^(999)+3x^(2)(1+x)^(998)+.....+1001x^(1000)`
`(x)/(1+x)S=x(1+x)^(999)+2x^(2)(1+x)^(998)+......+ 1000x^(1000)+(1001x^(1001))/(1+x)`
Subtract above equations,
`(1+(x)/(1+x))S=(1+x)^(1000)+(1+x)^(999)+x^(2)(1+x)^(998)+.......+ x^(1000)- (1001x^(1001))/(1+x)`
`rArr S=(1+x)^(1001)+x(1+x)^(1000)+x^(2)(1+x)^(9999)+......+ x^(1000)(1+x)-1001x^(1001)`
`=((1+x)^(1001)[((x)/(1+x))^(1001)-1])/((x)/(1+x)-1)-1001x^(1001)`
[sum of G.P.] `=(1+x)^(1002)-x^(1002)-1002x^(1001) therefore "coefficient of " x^(50)" in " S ="coefficient of " x^(50)` in
`[(1+x)^(1002)-x^(1002)-1002x^(1001)]=""^(1002)C_(50)`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 1 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 1 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos
  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos

Similar Questions

Explore conceptually related problems

Find the coefficient of x^8 in the expansion of (x^2-1/x)^(10)

Find the coefficient of x^(50) in the expansion of (1+x)^(101)xx(1-x+x^2)^(100)dot

Find the coefficient of x^7 in the expansion of (x-1/(x^2))^(40) .

Find the coefficient of x^(10) in the expansion of (1+2x)/((1-2x)^(2)) .

Find the coefficient of x^-7 in the expansion of (2x-1/(3x^2))^11 .

Find the coefficient of x in the expansion of (1 - 3x + 7x^(2)) (1 - x)^(16) .

Find the coefficient of x in the expansion of (1-3x+7x^2)(1-x)^(16) .

The coefficient of x^(n) in the expansion of ((1+x)^(2))/((1 - x)^(3)) , is

Find the coefficient of x^(6) in the expansion of (2x^(3)-(1)/(3x^(3)))^(10)

Find the coefficient of x^(6) in the expansion of (2x^(3)-(1)/(3x^(3)))^(10)