Home
Class 12
MATHS
The value of the definite integral int(2...

The value of the definite integral `int_(2pi)^(5pi//2)(sin^(-1)(cosx)+cos^(-1)(sinx))dx` is equal to

A

`(pi^(2))/(8)`

B

`(pi^(2))/(4)`

C

`(pi^(2))/(2)`

D

`pi^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{2\pi}^{\frac{5\pi}{2}} \left( \sin^{-1}(\cos x) + \cos^{-1}(\sin x) \right) dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the limits of the integral. We know that both \(\sin^{-1}(\cos x)\) and \(\cos^{-1}(\sin x)\) are periodic functions with a period of \(2\pi\). Therefore, we can express the integral as: \[ I = \int_{2\pi}^{\frac{5\pi}{2}} \left( \sin^{-1}(\cos x) + \cos^{-1}(\sin x) \right) dx = \int_{0}^{\frac{\pi}{2}} \left( \sin^{-1}(\cos x) + \cos^{-1}(\sin x) \right) dx \] ### Step 2: Use the Property of Integrals Using the property of integrals, we can transform the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \left( \sin^{-1}(\cos(\frac{\pi}{2} - x)) + \cos^{-1}(\sin(\frac{\pi}{2} - x)) \right) dx \] This simplifies to: \[ I = \int_{0}^{\frac{\pi}{2}} \left( \sin^{-1}(\sin x) + \cos^{-1}(\cos x) \right) dx \] ### Step 3: Simplify the Integral Now, we know that: \[ \sin^{-1}(\sin x) = x \quad \text{and} \quad \cos^{-1}(\cos x) = x \] for \(x\) in the interval \([0, \frac{\pi}{2}]\). Therefore, we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} (x + x) dx = \int_{0}^{\frac{\pi}{2}} 2x \, dx \] ### Step 4: Evaluate the Integral Now we can evaluate the integral: \[ I = 2 \int_{0}^{\frac{\pi}{2}} x \, dx \] Calculating the integral: \[ \int x \, dx = \frac{x^2}{2} \quad \text{so} \quad \int_{0}^{\frac{\pi}{2}} x \, dx = \left[ \frac{x^2}{2} \right]_{0}^{\frac{\pi}{2}} = \frac{(\frac{\pi}{2})^2}{2} - 0 = \frac{\pi^2}{8} \] Thus, \[ I = 2 \cdot \frac{\pi^2}{8} = \frac{\pi^2}{4} \] ### Final Answer The value of the definite integral is: \[ \boxed{\frac{\pi^2}{4}} \]

To solve the integral \( I = \int_{2\pi}^{\frac{5\pi}{2}} \left( \sin^{-1}(\cos x) + \cos^{-1}(\sin x) \right) dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the limits of the integral. We know that both \(\sin^{-1}(\cos x)\) and \(\cos^{-1}(\sin x)\) are periodic functions with a period of \(2\pi\). Therefore, we can express the integral as: \[ I = \int_{2\pi}^{\frac{5\pi}{2}} \left( \sin^{-1}(\cos x) + \cos^{-1}(\sin x) \right) dx = \int_{0}^{\frac{\pi}{2}} \left( \sin^{-1}(\cos x) + \cos^{-1}(\sin x) \right) dx \] ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 1 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 1 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos
  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(t+2pi)^(t+5pi//2) {sin^(-1)(cosx)+cos^(-1)(cosx)} dx is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

The value of the definite integral, int_0^(pi/2) (sin5x)/sinx dx is

Evaluate the definite integrals int_0^(pi/2)sin2xtan^(-1)(sinx)dx

The value of the definite integral int_(0)^(2npi) max (sinx,sin^(-1)( sinx)) dx equals to (where, n in l)

Evaluate the definite integrals int_(pi/6)^(pi/3)(sinx+cosx)/(sqrt(sin2x))dx

Evaluate the definite integrals int_(0)^(pi//4)(sinx+cosx)/(25-16(sinx-cosx)^(2)) dx

The value of the integral int_(-pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx , is

The value of the integral int_(-pi/2)^(pi//2) sqrt((1+cos2x)/(2))dx is

Evaluate the definite integrals int_0^(pi)(sin^2(x/2)-cos^2(x/2))dx