Home
Class 12
MATHS
If alpha, beta be roots of the equation ...

If `alpha, beta` be roots of the equation `375x ^(2) -25x-2=0 and s _(n) = alpha ^(n) +beta ^(n),` then `lim _( x to oo) lim _( x to oo) (sum _(r =1) ^(n ) S_(r))=`

A

`(7)/(116)`

B

`(1)/(12)`

C

`(29)/(358)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

Since `alpha, beta` are the roots of
`375x^(2)-25x-2=0 therefore alpha+beta=(25)/(375)=(1)/(15)`
and `alpha beta= -(2)/(375) therefore lim_(n to oo) sum_(r=1)^(n)S_(r)=lim_(n to oo) sum_(r=1)^(n)(alpha^(r)+beta^(r))`
`=(alpha+alpha^(2)+alpha^(3)+............oo)+(beta+beta^(2)+beta^(3)+.........oo)`
`=(alpha)/(1-alpha)+(beta)/(1-beta) = (alpha-alpha beta+beta-alpha beta)/((1-alpha)(1-beta))`
`=(alpha+beta-2alpha beta)/(1-(alpha+beta)+alpha beta)= ((1)/(15)+(4)/(375))/(1-(1)/(15)-(2)/(375))`
`=(25+4)/(375-25-2)=(29)/(348)=(1)/(12)`.
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 1 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 1 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos
  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos

Similar Questions

Explore conceptually related problems

if alpha , beta be roots of equation 375 x^2 -25 x -2 = 0 and s_n = alpha^n + beta^n then lim_(n->oo) (sum_(r=1)^n S_r) = .......

Let alpha and beta be the roots of the equation 5x^2+6x-2=0 . If S_n=alpha^n+beta^n, n=1,2,3.... then

If alpha, beta are roots of equation x^(2)-4x-3=0 and s_(n)=alpha^(n)+beta^(n), n in N then the value of (s_(7)-4s_(6))/s_(5) is

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

If alpha,beta are the roots of the equation x^2-2x+4=0 , find alpha^(n)+beta^(n) for (a) n=3k, k in N

If alpha , beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) , then aS_(n+1)+bS_(n)+cS_(n-1)=(n ge 2)

lf alpha and beta are the roots of the equation x^2-ax + b = 0 and A_n = alpha^n + beta^n , then which of the following is true ?

Let alpha and beta be the roots of the equation x^(2) -px+q =0 and V_(n) = alpha^(n) + beta^(n) , Show that V_(n+1) = pV_(n) -qV_(n-1) find V_(5)

If alpha and beta are roots of the equation x^(2)-3x+1=0 and a_(n)=alpha^(n)+beta^(n)-1 then find the value of (a_(5)-a_(1))/(a_(3)-a_(1))

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=