Home
Class 12
MATHS
Let f be a differentiable function satis...

Let f be a differentiable function satisfying `f(xy) =f(x).f(y).AA x gt 0, y gt 0 and f(1+x) =1+x{1 + g(x)}`, where `lim_(xto0) g(x) = 0` then `int(f(x))/(f.(x))dx` is equal to

A

`(x^(2))/(2)+C`

B

`(x^(3))/(2)+C`

C

`(x^(3))/(3)+C`

D

`(x^(2))/(3)+C`

Text Solution

Verified by Experts

The correct Answer is:
A

Put `x=y=1`, we get `f(1)=f^(2)(1) rArr f(1)=1[because f(1) ne 0]`
Differentiating with respect to x partially, we get
`yf'(xy)=f(y)f'(x)`
Putting `x=1 rArr yf'(y)=f(y)f'(1) rArr (f(y))/(f'(y))=(y)/(f'(1))`
Now, `int (f(x))/(f'(x))dx=int (x)/(f'(1))dx=(1)/(f'(1))((x^(2))/(2)+c)`
`f'(1)=lim_(h to 0) (f(1+h)-f(1))/(h)`
`=lim_(h to 0) (1+h+hg(h)-1)/(h) = lim_(h to 0)1+g(h)=1`
`because lim_(h to 0)g(h)=0 therefore int (f(x))/(f'(x))dx=(x^(2))/(2)+C`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 1 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 1 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos
  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos

Similar Questions

Explore conceptually related problems

Let f be a differentiable function satisfying f(xy)=f(x).f(y).AA x gt 0, y gt 0 and f(1+x)=1+x{1+g(x)} , where lim_(x to 0)g(x)=0 then int (f(x))/(f'(x))dx is equal to

Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA , x,y in R, y!=0 and f(1)!=0 , f'(1)=3 then

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

If f(x) is a differentiable function satisfying |f'(x)|le4AA x in [0, 4] and f(0)=0 , then

Let f(x) be a function satisfying f(x+y)=f(x)f(y) for all x,y in R and f(x)=1+xg(x) where underset(x to 0)lim g(x)=1 . Then f'(x) is equal to

Let f(x) be a continuous and differentiable function satisfying f(x + y) = f(x)f(y) AA x,y in R if f(x) an be expressed as f(x) = 1 + x P(x) + x^2Q(x) where lim_(x->0) P(x) = a and lim_(x->0) Q(x) = b, then f'(x) is equal to :

Let f be a function such that f(xy) = f(x).f(y), AA y in R and R(1 + x) = 1 + x(1 + g(x)) . where lim_(x rarr 0) g(x) = 0 . Find the value of int_(1)^(2) (f(x))/(f'(x)).(1)/(1+x^(2))dx

Let a real valued function f satisfy f(x + y) = f(x)f(y)AA x, y in R and f(0)!=0 Then g(x)=f(x)/(1+[f(x)]^2) is

If f(x) is a differentiable real valued function satisfying f''(x)-3f'(x) gt 3 AA x ge 0 and f'(0)=-1, then f(x)+x AA x gt 0 is

Let f be differentiable function such that f'(x)=7-3/4(f(x))/x,(xgt0) and f(1)ne4" Then " lim_(xto0^+) xf(1/x)