Home
Class 12
MATHS
If sqrt(1-x^6)+sqrt(1-x^6)=a(x^3-y^3), t...

If `sqrt(1-x^6)+sqrt(1-x^6)=a(x^3-y^3),` then prove that `(dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6))`

A

`f(x,y)=y//x`

B

`f(x, y)=y^(2)//x^(2)`

C

`f(x, y)=2y^(2)//x^(2)`

D

`f(x, y)=x^(2)//y^(2)`

Text Solution

Verified by Experts

The correct Answer is:
D

Put `x^(3)= sin theta, y^(3) = sin phi, ` then
`(cos theta+cos phi)=a (sin theta-sin phi)`
`rArr 2 cos((theta+phi)/(2))cos((theta-phi)/(2))=2a cos ((theta+phi)/(2))sin((theta-phi)/(2))`
`rArr cot((theta-phi)/(2))=a`
`rArr (theta-phi)/(2)=cot^(-1)a rArr sin^(-1)x^(3)-sin^(-1)y^(3)=2cot^(-1)a`
`therefore (3x^(2))/(sqrt((1-x^(6))))-(3y^(2))/(sqrt((1-y^(6))))(dy)/(dx)=0rArr (dy)/(dx)=(x^(2))/(y^(2))sqrt(((1-y^(6))/(1-x^(6))))`
`therefore f(x, y)=(x^(2))/(y^(2))`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 1 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 1 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos
  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos

Similar Questions

Explore conceptually related problems

If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3), then prove that (dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6))

If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3),prove that (dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6,)

If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3),p rov et h a t(dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6) where -1

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y), prove that (dy)/(dx)=sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y),p rov et h a t(dy)/(dx)=sqrt((1-y^2)/(1-x^2))