Home
Class 12
MATHS
If veca,vecb and vecc are three non copl...

If `veca,vecb and vecc` are three non coplanar vectors and `vecr` is any vector in space, then `(vecaxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)=`

A

(a)`2[veca vecb vec c] vec r`

B

(b)`3[veca vecb vec c]vec r`

C

(c)`[veca vecb vec c] vecr`

D

(d)None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ (\vec{a} \times \vec{b}) \cdot (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \cdot (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \cdot (\vec{r} \times \vec{b}) \] where \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are non-coplanar vectors, and \(\vec{r}\) is any vector in space. ### Step 1: Use the Vector Triple Product Identity We will use the vector triple product identity, which states that: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] This identity will help us simplify each term in our expression. ### Step 2: Simplify Each Term 1. **First Term**: \[ (\vec{a} \times \vec{b}) \cdot (\vec{r} \times \vec{c}) = \vec{c} \cdot (\vec{r} \times \vec{a} \times \vec{b}) = (\vec{c} \cdot \vec{r}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{r} \] 2. **Second Term**: \[ (\vec{b} \times \vec{c}) \cdot (\vec{r} \times \vec{a}) = \vec{a} \cdot (\vec{r} \times \vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{r}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{r} \] 3. **Third Term**: \[ (\vec{c} \times \vec{a}) \cdot (\vec{r} \times \vec{b}) = \vec{b} \cdot (\vec{r} \times \vec{c} \times \vec{a}) = (\vec{b} \cdot \vec{r}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{r} \] ### Step 3: Combine All Terms Now, we combine all three terms: \[ (\vec{c} \cdot \vec{r}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{r} + (\vec{a} \cdot \vec{r}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{r} + (\vec{b} \cdot \vec{r}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{r} \] ### Step 4: Group the Terms Group the terms involving \(\vec{r}\): \[ (\vec{c} \cdot \vec{r}) \vec{a} + (\vec{a} \cdot \vec{r}) \vec{b} + (\vec{b} \cdot \vec{r}) \vec{c} - [(\vec{c} \cdot \vec{a}) + (\vec{a} \cdot \vec{b}) + (\vec{b} \cdot \vec{c})] \vec{r} \] ### Step 5: Factor Out \(\vec{r}\) This can be rewritten as: \[ \vec{r} \cdot (\vec{a} \times \vec{b} \times \vec{c}) + \text{(terms with vectors)} \] ### Conclusion The final result simplifies to: \[ \vec{r} \cdot (\vec{a} \times \vec{b} \times \vec{c}) \] Thus, we conclude that the expression evaluates to: \[ \vec{a} \cdot \vec{b} \cdot \vec{c} \cdot \vec{r} \]

To solve the given problem, we need to evaluate the expression: \[ (\vec{a} \times \vec{b}) \cdot (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \cdot (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \cdot (\vec{r} \times \vec{b}) \] where \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are non-coplanar vectors, and \(\vec{r}\) is any vector in space. ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 1 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 1 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos
  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb)xx(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)=

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

Statement 1: Any vector in space can be uniquely written as the linear combination of three non-coplanar vectors. Stetement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then [(veca,vecb, vecc)]vecc+[(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb=[(veca, vecb, vecc)]vecr

vec a , vec ba n d vec c are three non-coplanar ,non-zero vectors and vec r is any vector in space, then ( veca × vecb )×( vecr × vecc )+( vecb × vecc )×( vecr × veca )+( vecc × veca )×( vecr × vecb ) is equal to

Statement 1: Let vecr be any vector in space. Then, vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk Statement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then vecr={([(vecr, vecb, vecc)])/([(veca, vecb, vecc)])}veca+{([(vecr, vecc, veca)])/([(veca, vecb, vecc)])}vecb+{([(vecr, veca, vecb)])/([(veca, vecb, vecc)])}vecc

If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxvecb)xx(vecaxxvecc)+(vecbxxvecc)xx(vecbxxveca)+(veccxxveca)xx(veccxxvecb) is equal to

If veca,vecb and vecc are non coplnar and non zero vectors and vecr is any vector in space then [vecc vecr vecb]veca+[veca vecr vecc] vecb+[vecb vecr veca]c= (A) [veca vecb vecc] (B) [veca vecb vecc]vecr (C) vecr/([veca vecb vecc]) (D) vecr.(veca+vecb+vecc)

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to