Home
Class 12
MATHS
If f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",...

If `f(x)={(((1-sin^(3)x))/(3cos^(2)x)",",x lt (pi)/(2)),(a",",x=(pi)/(2)),((b(1-sinx))/((pi-2x)^(2))",",x gt (pi)/(2)):}`
is continuous at `x=(pi)/(2)`, then the value of `((b)/(a))^(5//3)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure the function \( f(x) \) is continuous at \( x = \frac{\pi}{2} \). The function is defined piecewise as follows: \[ f(x) = \begin{cases} \frac{1 - \sin^3 x}{3 \cos^2 x} & \text{if } x < \frac{\pi}{2} \\ a & \text{if } x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x)^2} & \text{if } x > \frac{\pi}{2} \end{cases} \] ### Step 1: Find \( f\left(\frac{\pi}{2}\right) \) Since \( f\left(\frac{\pi}{2}\right) = a \), we need to find the left-hand limit \( \lim_{x \to \frac{\pi}{2}^-} f(x) \) and the right-hand limit \( \lim_{x \to \frac{\pi}{2}^+} f(x) \). ### Step 2: Calculate the left-hand limit For \( x < \frac{\pi}{2} \): \[ f(x) = \frac{1 - \sin^3 x}{3 \cos^2 x} \] We need to evaluate: \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin^3 x}{3 \cos^2 x} \] As \( x \to \frac{\pi}{2} \): - \( \sin x \to 1 \) so \( \sin^3 x \to 1 \) - \( \cos x \to 0 \) so \( \cos^2 x \to 0 \) Thus, we have: \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = \frac{1 - 1}{3 \cdot 0} = \frac{0}{0} \] This is an indeterminate form, so we apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule Differentiate the numerator and the denominator: 1. **Numerator**: \( \frac{d}{dx}(1 - \sin^3 x) = -3 \sin^2 x \cos x \) 2. **Denominator**: \( \frac{d}{dx}(3 \cos^2 x) = -6 \cos x \sin x \) Now we can rewrite the limit: \[ \lim_{x \to \frac{\pi}{2}^-} \frac{-3 \sin^2 x \cos x}{-6 \cos x \sin x} = \lim_{x \to \frac{\pi}{2}^-} \frac{3 \sin x}{2} = \frac{3 \cdot 1}{2} = \frac{3}{2} \] ### Step 4: Calculate the right-hand limit For \( x > \frac{\pi}{2} \): \[ f(x) = \frac{b(1 - \sin x)}{(\pi - 2x)^2} \] We need to evaluate: \[ \lim_{x \to \frac{\pi}{2}^+} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{b(1 - \sin x)}{(\pi - 2x)^2} \] As \( x \to \frac{\pi}{2} \): - \( \sin x \to 1 \) so \( 1 - \sin x \to 0 \) - \( \pi - 2x \to 0 \) This also results in an indeterminate form \( \frac{0}{0} \). We apply L'Hôpital's Rule again. ### Step 5: Apply L'Hôpital's Rule Differentiate the numerator and denominator: 1. **Numerator**: \( \frac{d}{dx}(b(1 - \sin x)) = -b \cos x \) 2. **Denominator**: \( \frac{d}{dx}((\pi - 2x)^2) = -4(\pi - 2x) \) Now we can rewrite the limit: \[ \lim_{x \to \frac{\pi}{2}^+} \frac{-b \cos x}{-4(\pi - 2x)} = \lim_{x \to \frac{\pi}{2}^+} \frac{b \cos x}{4(\pi - 2x)} \] As \( x \to \frac{\pi}{2} \): - \( \cos x \to 0 \) - \( \pi - 2x \to 0 \) This again results in \( \frac{0}{0} \), so we apply L'Hôpital's Rule a second time. ### Step 6: Apply L'Hôpital's Rule again Differentiate again: 1. **Numerator**: \( \frac{d}{dx}(b \cos x) = -b \sin x \) 2. **Denominator**: \( \frac{d}{dx}(-4(\pi - 2x)) = 8 \) Now we can rewrite the limit: \[ \lim_{x \to \frac{\pi}{2}^+} \frac{-b \sin x}{8} = \frac{-b \cdot 1}{8} = -\frac{b}{8} \] ### Step 7: Set the limits equal for continuity For continuity at \( x = \frac{\pi}{2} \): \[ \frac{3}{2} = a = -\frac{b}{8} \] From \( a = \frac{3}{2} \), we have: \[ b = -8a = -8 \cdot \frac{3}{2} = -12 \] ### Step 8: Find \( \frac{b}{a} \) Now we calculate \( \frac{b}{a} \): \[ \frac{b}{a} = \frac{-12}{\frac{3}{2}} = -12 \cdot \frac{2}{3} = -8 \] ### Step 9: Calculate \( \left(\frac{b}{a}\right)^{\frac{5}{3}} \) Finally, we find: \[ \left(\frac{b}{a}\right)^{\frac{5}{3}} = (-8)^{\frac{5}{3}} = -32 \] Thus, the final answer is: \[ \boxed{-32} \]

To solve the problem, we need to ensure the function \( f(x) \) is continuous at \( x = \frac{\pi}{2} \). The function is defined piecewise as follows: \[ f(x) = \begin{cases} \frac{1 - \sin^3 x}{3 \cos^2 x} & \text{if } x < \frac{\pi}{2} \\ a & \text{if } x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x)^2} & \text{if } x > \frac{\pi}{2} ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 1 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 1 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos
  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(a,","x=(pi)/(2)),((sqrt(2x-pi))/(sqrt(9+sqrt(2x-pi))-b),","xgt(pi)/(2)):} . If f(x) is continuous at x=(pi)/(2) , then the value of (a^(2))/(5b) is

If f(x)={{:(mx+1",",xle(pi)/(2)),(sinx+n",",xge (pi)/(2)):} is continuous at x=(pi)/(2) , then

If f(x)=[{:(mx+1,if x le (pi)/(2)),(sinx+n,ifxgt(pi)/(2)):} is continuous at x = (pi)/(2) , then

f(x)={{:(((3)/(2))^((cot 3x)/(cot 2x)), 0 le xlt (pi)/(2)),(b+3, x =(pi)/(2)),( (1+|cotx|)^((a tan x|)/b), (pi)/(2) lt xlt pi):} is continuous at x= pi/2 , then

If f(x)={[(1-sin^2x)/(3cos^2x),xltpi/(2)],[a,x=pi/2],[(b(1-sinx))/((pi-2x)^2),x gtpi/2]} then f(x) is continuous at x=pi/2 ,if (a) a=1/3,b=2 (b) a=1/3,=8/3 (c) a=2/3,b=8/3 (d) none of these

If f(x)={m x+1,xlt=pi/2sinx+n ,x >pi/2 is continuous at x=pi/2, then

Let f(x)={(1-sin^3x)/(3cos^2x) if x pi/2 find a and b. .

Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In sin x)/((In(1+pi^(2)-4pix+4x^(2)))),x ne (pi)/(2)),(,k,x=(pi)/(2)):} If a continuous at x=(pi)/(2) , then the value of 8sqrt|k|,is

Let f(x)={(sinx+cosx",",0 lt x lt (pi)/(2)),(a",",x=pi//2),(tan^(2)x+"cosec"x",",pi//2 lt x lt pi):} Then its odd extension is

If f(x)={((1-sin((3x)/2))/(pi-3x) , x != pi/2),(lambda , x=pi/2)) be continuous at x=pi/3 , then value of lamda is (A) -1 (B) 1 (C) 0 (D) 2