Home
Class 12
MATHS
Find the value of [a] if the lines (x...

Find the value of [a] if the lines
`(x-2)/(3)=(y+4)/(2)=(z-1)/(5)` & `(x+1)/(-2)=(y-1)/(3)=(z-a)/(4)` are coplanar (where [] denotes greatest integer function)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( [a] \) such that the lines \[ \frac{x-2}{3} = \frac{y+4}{2} = \frac{z-1}{5} \] and \[ \frac{x+1}{-2} = \frac{y-1}{3} = \frac{z-a}{4} \] are coplanar, we will follow these steps: ### Step 1: Identify the direction vectors and points on the lines The first line can be expressed in parametric form as: - \( x = 2 + 3t \) - \( y = -4 + 2t \) - \( z = 1 + 5t \) From this, we can identify: - Point on line 1: \( P_1(2, -4, 1) \) - Direction vector of line 1: \( \vec{v_1} = (3, 2, 5) \) The second line can be expressed in parametric form as: - \( x = -1 - 2s \) - \( y = 1 + 3s \) - \( z = a + 4s \) From this, we can identify: - Point on line 2: \( P_2(-1, 1, a) \) - Direction vector of line 2: \( \vec{v_2} = (-2, 3, 4) \) ### Step 2: Find the vector connecting the two points The vector connecting the points \( P_1 \) and \( P_2 \) is given by: \[ \vec{P_1P_2} = P_2 - P_1 = (-1 - 2, 1 + 4, a - 1) = (-3, 5, a - 1) \] ### Step 3: Set up the determinant for coplanarity The lines are coplanar if the scalar triple product of the vectors \( \vec{v_1} \), \( \vec{v_2} \), and \( \vec{P_1P_2} \) is zero. This can be expressed using the determinant: \[ \begin{vmatrix} 3 & 2 & 5 \\ -2 & 3 & 4 \\ -3 & 5 & a - 1 \end{vmatrix} = 0 \] ### Step 4: Calculate the determinant Calculating the determinant, we have: \[ = 3 \begin{vmatrix} 3 & 4 \\ 5 & a - 1 \end{vmatrix} - 2 \begin{vmatrix} -2 & 4 \\ -3 & a - 1 \end{vmatrix} + 5 \begin{vmatrix} -2 & 3 \\ -3 & 5 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} 3 & 4 \\ 5 & a - 1 \end{vmatrix} = 3(a - 1) - 20 = 3a - 23 \) 2. \( \begin{vmatrix} -2 & 4 \\ -3 & a - 1 \end{vmatrix} = -2(a - 1) + 12 = -2a + 10 \) 3. \( \begin{vmatrix} -2 & 3 \\ -3 & 5 \end{vmatrix} = -10 + 9 = -1 \) Substituting back into the determinant: \[ 3(3a - 23) - 2(-2a + 10) + 5(-1) = 0 \] Expanding this gives: \[ 9a - 69 + 4a - 20 - 5 = 0 \] Combining like terms: \[ 13a - 94 = 0 \] ### Step 5: Solve for \( a \) Now, solving for \( a \): \[ 13a = 94 \implies a = \frac{94}{13} \] ### Step 6: Find the greatest integer function \( [a] \) Calculating \( \frac{94}{13} \): \[ \frac{94}{13} \approx 7.230769 \] Thus, the greatest integer function \( [a] = 7 \). ### Final Answer \[ \boxed{7} \]

To solve the problem of finding the value of \( [a] \) such that the lines \[ \frac{x-2}{3} = \frac{y+4}{2} = \frac{z-1}{5} \] and ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 1 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 1 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos
  • JEE MAIN REVISION TEST - 10| JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|6 Videos

Similar Questions

Explore conceptually related problems

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

The lines (x-2)/(1) = (y-3)/(1) =(z-4)/(-k) and (x-3)/(k)=(y-4)/(1) = (z-5)/(1) are coplanar if the values of k are

The line (x-2)/1=(y+4)/(2)=(z-3)/3 and x/2=(y-1)/(4)=(z+3)/(6) are

Find the angle between the lines (x+3)/(3)=(y+1)/(5)=(z+3)/(4)and(x+1)/(1)=(y-4)/(1)=(z-5)/(2) .

Show that the lines (x+3)/(-3)=(y-1)/1=(z-5)/5 and (x+1)/(-1)=(y-2)/2=(z-5)/5 are coplanar.

If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(lamda) and (x-1)/(lamda)=(y-4)/(2)=(z-5)/(1) intersect then

The lines (x-2)/1=(y-3)/2=(z-4)/(-2k) and (x-1)/k=(y-2)/3=(z-6)/1 are coplanar if

Find the angle between the two lines : (x+1)/(2)=(y-2)/(5)=(z+3)/(4)and(x-1)/(5)=(y+2)/(2)=(z-1)/(-5)

If lines (x-3)/1=(y-[K])/2=(z-1)/1 and (x-1)/2=(y+1)/3=(z-1)/4 intersect, (where [.] denotes greatest integer function) then K can be 4 (2) (13)/4 (3) 5 (4) (37)/6

Show that the lines (x+3)/(-3) = y - 1 = (z-5)/(5) and (x+1)/(-1) = (y-2)/(2) = (z-5)/(5) are coplanar. Also find their point of intersection.