Home
Class 12
MATHS
Let alpha be a root of the equation x ^(...

Let `alpha` be a root of the equation `x ^(2) - x+1=0,` and the matrix `A=[{:(1,1,1),(1, alpha , alpha ^(2)), (1, alpha ^(2), alpha ^(4)):}]` and matrix `B= [{:(1,-1, -1),(1, alpha, - alpha ^(2)),(-1, -alpha ^(2), - alpha ^(4)):}]` then the vlaue of |AB| is:

A

1

B

`-1`

C

3

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the determinant of the product of two matrices \( A \) and \( B \). We will first find the determinants of each matrix separately and then multiply them. ### Step 1: Identify the roots of the equation The roots of the equation \( x^2 - x + 1 = 0 \) can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -1, c = 1 \): \[ x = \frac{1 \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{1 \pm \sqrt{1 - 4}}{2} = \frac{1 \pm \sqrt{-3}}{2} = \frac{1 \pm i\sqrt{3}}{2} \] Let \( \alpha = \frac{1 + i\sqrt{3}}{2} \) (one of the roots). ### Step 2: Define the matrices The matrices are given as: \[ A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \alpha^2 & \alpha^4 \end{pmatrix} \] \[ B = \begin{pmatrix} 1 & -1 & -1 \\ 1 & \alpha & -\alpha^2 \\ -1 & -\alpha^2 & -\alpha^4 \end{pmatrix} \] ### Step 3: Calculate the determinant of matrix \( A \) Using the determinant formula for a \( 3 \times 3 \) matrix: \[ |A| = a(ei - fh) - b(di - fg) + c(dh - eg) \] Substituting the values from matrix \( A \): \[ |A| = 1(\alpha \cdot \alpha^4 - \alpha^2 \cdot 1) - 1(1 \cdot \alpha^4 - \alpha^2 \cdot 1) + 1(1 \cdot \alpha^2 - \alpha \cdot 1) \] Calculating each term: 1. \( \alpha \cdot \alpha^4 - \alpha^2 \cdot 1 = \alpha^5 - \alpha^2 \) 2. \( 1 \cdot \alpha^4 - \alpha^2 \cdot 1 = \alpha^4 - \alpha^2 \) 3. \( 1 \cdot \alpha^2 - \alpha \cdot 1 = \alpha^2 - \alpha \) Now substituting back: \[ |A| = \alpha^5 - \alpha^2 - (\alpha^4 - \alpha^2) + (\alpha^2 - \alpha) \] Simplifying: \[ |A| = \alpha^5 - \alpha^4 + \alpha - \alpha \] Using \( \alpha^2 = \alpha - 1 \) (from the original equation): \[ |A| = \alpha^5 - \alpha^4 \] Using \( \alpha^3 = \alpha^2 \cdot \alpha = (\alpha - 1) \cdot \alpha = \alpha^2 - \alpha = -1 \): Thus, \( \alpha^5 = \alpha^2 \) and \( \alpha^4 = \alpha \): \[ |A| = \alpha^2 - \alpha = -1 \] ### Step 4: Calculate the determinant of matrix \( B \) Using a similar approach: \[ |B| = 1(-\alpha^2 \cdot -\alpha^4 - (-1)(-1)) - (-1)(1 \cdot -\alpha^4 - (-\alpha^2)(-1)) + (-1)(1 \cdot -\alpha^2 - (-1)(1)) \] Calculating each term: 1. \( -\alpha^2 \cdot -\alpha^4 - 1 = \alpha^6 - 1 = 1 - 1 = 0 \) 2. \( -(-1)(-\alpha^4 - \alpha^2) = \alpha^4 + \alpha^2 = \alpha + \alpha - 1 = 0 \) 3. \( -(-1)(-\alpha^2 - 1) = \alpha^2 + 1 = 0 \) Thus, \( |B| = 0 \). ### Step 5: Calculate the determinant of the product \( |AB| \) Using the property of determinants: \[ |AB| = |A| \cdot |B| = (-1) \cdot 0 = 0 \] ### Final Answer The value of \( |AB| \) is \( 0 \).

To solve the problem step by step, we need to find the determinant of the product of two matrices \( A \) and \( B \). We will first find the determinants of each matrix separately and then multiply them. ### Step 1: Identify the roots of the equation The roots of the equation \( x^2 - x + 1 = 0 \) can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -1, c = 1 \): ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE Main Revision Test-9 | JEE-2020

    VMC MODULES ENGLISH|Exercise SECTION 2|5 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos

Similar Questions

Explore conceptually related problems

Let alpha be a root of the equation x ^(2) + x + 1 = 0 and the matrix A = ( 1 ) /(sqrt3) [{:( 1,,1,,1),( 1,, alpha ,, alpha ^(2)), ( 1 ,, alpha ^(2),, alpha ^(4)):}] then the matrix A ^( 31 ) is equal to :

Let alpha, beta be the roots of equation x ^ 2 - x + 1 = 0 and the matrix A = (1 ) /(sqrt3 ) |{:(1,,1,,1),(1,,alpha,,alpha ^2),(1,,beta,,-beta^ 2):}| , the value of det (A. A^T) is

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

Let alpha and beta be the roots of the equation x^(2) + x + 1 = 0 . Then, for y ne 0 in R. [{:(y+1, alpha,beta), (alpha, y+beta, 1),(beta, 1, y+alpha):}] is

If alpha is a root of the equation 4x^(2)+3x-1=0 and f(x)=4x^(2)-3x+1 , then 2(f(alpha)+(alpha)) is equal to

If alpha, beta are roots of the equation x^(2) + x + 1 = 0 , then the equation whose roots are (alpha)/(beta) and (beta)/(alpha) , is

If alpha is a positive root of the equation x^4 +x^3 -4x^2 +x+1=0 then alpha +1/alpha

If alpha is a root of the equation 4x^2+2x-1=0, then prove that 4alpha^3-3alpha is the other root.

If alpha and beta be the roots of equation x^(2) + 3x + 1 = 0 then the value of ((alpha)/(1 + beta))^(2) + ((beta)/(1 + alpha))^(2) is equal to