Home
Class 12
MATHS
If f (x) = sqrt(cos ec ^(2) x - 2 sin x ...

If `f (x) = sqrt(cos ec ^(2) x - 2 sin x cos x - (1)/(tan ^(2) x ))`
`x in ((7pi)/(4), 2pi )` then ` f' ((11 pi)/(6))=`

A

`(1- sqrt3)/(2)`

B

`(sqrt3-1)/(2)`

C

`(1+sqrt3)/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the function \( f(x) \) and then find its derivative at the specified point. ### Step 1: Rewrite the function Given: \[ f(x) = \sqrt{\cos^2 x - 2 \sin x \cos x - \frac{1}{\tan^2 x}} \] We can rewrite \( \frac{1}{\tan^2 x} \) as \( \cot^2 x \): \[ f(x) = \sqrt{\cos^2 x - 2 \sin x \cos x - \cot^2 x} \] ### Step 2: Simplify the expression Using the identity \( \cot^2 x = \frac{\cos^2 x}{\sin^2 x} \), we can rewrite \( f(x) \): \[ f(x) = \sqrt{\cos^2 x - 2 \sin x \cos x - \frac{\cos^2 x}{\sin^2 x}} \] Now, we can combine the terms: \[ f(x) = \sqrt{\cos^2 x - 2 \sin x \cos x - \frac{\cos^2 x}{\sin^2 x}} \] ### Step 3: Substitute \( \sin^2 x + \cos^2 x = 1 \) We know that \( \sin^2 x + \cos^2 x = 1 \). Therefore, we can express \( 1 \) as \( \sin^2 x + \cos^2 x \): \[ f(x) = \sqrt{(\cos^2 x + \sin^2 x) - 2 \sin x \cos x} \] This simplifies to: \[ f(x) = \sqrt{1 - 2 \sin x \cos x} \] ### Step 4: Use the double angle identity Using the double angle identity \( \sin(2x) = 2 \sin x \cos x \): \[ f(x) = \sqrt{1 - \sin(2x)} \] ### Step 5: Find the derivative \( f'(x) \) To find \( f'(x) \), we apply the chain rule: \[ f'(x) = \frac{1}{2\sqrt{1 - \sin(2x)}} \cdot (-\cos(2x) \cdot 2) \] Thus, \[ f'(x) = -\frac{\cos(2x)}{\sqrt{1 - \sin(2x)}} \] ### Step 6: Evaluate \( f' \left( \frac{11\pi}{6} \right) \) Now we need to evaluate \( f' \left( \frac{11\pi}{6} \right) \): 1. Calculate \( \sin(2 \cdot \frac{11\pi}{6}) = \sin\left(\frac{11\pi}{3}\right) = \sin\left(\frac{5\pi}{3}\right) = -\frac{\sqrt{3}}{2} \) 2. Calculate \( \cos(2 \cdot \frac{11\pi}{6}) = \cos\left(\frac{11\pi}{3}\right) = \cos\left(\frac{5\pi}{3}\right) = \frac{1}{2} \) Now substituting these values into the derivative: \[ f' \left( \frac{11\pi}{6} \right) = -\frac{\frac{1}{2}}{\sqrt{1 - (-\frac{\sqrt{3}}{2})}} = -\frac{\frac{1}{2}}{\sqrt{1 + \frac{\sqrt{3}}{2}}} \] ### Step 7: Simplify the expression To simplify \( \sqrt{1 + \frac{\sqrt{3}}{2}} \): \[ 1 + \frac{\sqrt{3}}{2} = \frac{2 + \sqrt{3}}{2} \] Thus, \[ \sqrt{1 + \frac{\sqrt{3}}{2}} = \sqrt{\frac{2 + \sqrt{3}}{2}} = \frac{\sqrt{2 + \sqrt{3}}}{\sqrt{2}} \] So, \[ f' \left( \frac{11\pi}{6} \right) = -\frac{\frac{1}{2}}{\frac{\sqrt{2 + \sqrt{3}}}{\sqrt{2}}} = -\frac{\sqrt{2}}{2\sqrt{2 + \sqrt{3}}} \] ### Final Answer Thus, the value of \( f' \left( \frac{11\pi}{6} \right) \) is: \[ f' \left( \frac{11\pi}{6} \right) = 1 - \frac{\sqrt{3}}{2} \]

To solve the problem step by step, we will analyze the function \( f(x) \) and then find its derivative at the specified point. ### Step 1: Rewrite the function Given: \[ f(x) = \sqrt{\cos^2 x - 2 \sin x \cos x - \frac{1}{\tan^2 x}} \] We can rewrite \( \frac{1}{\tan^2 x} \) as \( \cot^2 x \): ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE Main Revision Test-9 | JEE-2020

    VMC MODULES ENGLISH|Exercise SECTION 2|5 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sqrt("cosec"^2x-2sinx cosx - 1/(tan^2x)) x in ((7pi)/4,2pi) , then f '((11pi)/6)=

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

If f(x) = cos x cos 2x cos 4x cos 8x cos 16x then find f' (pi/4)

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

If f (x) =2x, g (x) =3 sin x -x cos x, then for x in (0, (pi)/(2)):

If f (x) =|sin x-|cos x ||, then f '((7pi)/(6))=

Let f (x) = int x ^(2) cos ^(2)x (2x + 6 tan x - 2x tan ^(2) x ) dx and f (x) passes through the point (pi, 0) If f : R-(2n +1) pi/2 to R then f (x) be a :

Let f (x) = int x ^(2) cos ^(2)x (2x + 6 tan x - 2x tan ^(2) x ) dx and f (x) passes through the point (pi, 0) The number of solution (s) of the equation f (x) =x ^(3) in [0, 2pi] be:

f(x) = sin^(-1)(sin x) then (d)/(dx)f(x) at x = (7pi)/(2) is