Home
Class 12
MATHS
If |(z +4)/(2z -1)|=1, where z =x +iy. ...

If` |(z +4)/(2z -1)|=1,` where `z =x +iy.` Then the point (x,y) lies on a:

A

circle with center (4,0)

B

circel with center `(-2,0)`

C

circle with center `(2,0)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \left|\frac{z + 4}{2z - 1}\right| = 1 \] where \( z = x + iy \). ### Step 1: Apply the Modulus Property Using the property of modulus, we can rewrite the equation as: \[ |z + 4| = |2z - 1| \] ### Step 2: Substitute \( z \) Substituting \( z = x + iy \): \[ | (x + 4) + iy | = | (2x - 1) + 2iy | \] ### Step 3: Calculate the Moduli Now we calculate the moduli on both sides: \[ \sqrt{(x + 4)^2 + y^2} = \sqrt{(2x - 1)^2 + (2y)^2} \] ### Step 4: Square Both Sides Squaring both sides to eliminate the square roots gives: \[ (x + 4)^2 + y^2 = (2x - 1)^2 + (2y)^2 \] ### Step 5: Expand Both Sides Expanding both sides: Left side: \[ (x + 4)^2 + y^2 = x^2 + 8x + 16 + y^2 \] Right side: \[ (2x - 1)^2 + (2y)^2 = 4x^2 - 4x + 1 + 4y^2 \] ### Step 6: Set the Equation Setting the two expanded sides equal to each other: \[ x^2 + 8x + 16 + y^2 = 4x^2 - 4x + 1 + 4y^2 \] ### Step 7: Rearranging the Equation Rearranging gives: \[ x^2 + 8x + 16 + y^2 - 4x^2 + 4x - 1 - 4y^2 = 0 \] Combine like terms: \[ -3x^2 + 12x - 3y^2 + 15 = 0 \] ### Step 8: Divide by -3 Dividing the entire equation by -3: \[ x^2 - 4x + y^2 - 5 = 0 \] ### Step 9: Completing the Square Completing the square for \( x \): \[ (x^2 - 4x + 4) + y^2 - 5 - 4 = 0 \] This simplifies to: \[ (x - 2)^2 + y^2 = 9 \] ### Conclusion This represents a circle with center at \( (2, 0) \) and radius \( 3 \). Thus, the point \( (x, y) \) lies on a circle.

To solve the problem, we start with the given equation: \[ \left|\frac{z + 4}{2z - 1}\right| = 1 \] where \( z = x + iy \). ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE Main Revision Test-9 | JEE-2020

    VMC MODULES ENGLISH|Exercise SECTION 2|5 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos

Similar Questions

Explore conceptually related problems

Let 0 ne a, 0 ne b in R . Suppose S={z in C, z=1/(a+ibt)t in R, t ne 0} , where i=sqrt(-1) . If z=x+iy and z in S , then (x,y) lies on

If z=x+iy and w=(1-iz)/(z-i) , then |w|=1 implies that in the complex plane (A) z lies on imaginary axis (B) z lies on real axis (C) z lies on unit circle (D) None of these

If xyz=(1-x)(1-y)(1-z) Where 0<=x,y, z<=1 , then the minimum value of x(1-z)+y (1-x)+ z(1-y) is

If z ne 1 and (z^(2))/(z-1) is real, then the point represented by the complex number z lies

The number of solutions of sqrt(2)|z-1|=z-i, where z=x+iy is (A) 0 (B) 1 (C) 2 (D) 3

The equation of the plane containing the line 2x+z-4=0 nd 2y+z=0 and passing through the point (2,1,-1) is (A) x+y-z=4 (B) x-y-z=2 (C) x+y+z+2=0 (D) x+y+z=2

If int(x^2-2)/((x^4+5x^2+4)tan^-1((x^2+2)/x))dx=log|f(z)|+c , then (A) f(z)=tan^-1z , where z=sqrt(x+2) (B) f(z)=tan^-1z , where z=x+2/x (C) f(z)=sin^-1z , where z=(x+2)/x (D) none of these

If arg(z-1)=arg(z+2i) , then find (x-1):y , where z=x+iy

If arg(z-1)=arg(z+3i) , then find (x-1):y , where z=x+iy .

If sec^-1 ((z-2)/i) lies between 0 and pi/2 , where z=x+iy then (A) xgt2,ygt1 (B) x=2,ygt1 (C) x=2,y=1 (D) xlt2,y=1