Home
Class 12
MATHS
If g (x) = x ^(2) -1 and gof (x) = x ^(2...

If `g (x) = x ^(2) -1 and gof (x) = x ^(2) + 4x + 3,` then `f ((1)/(2))` is equal `(f(x) gt 0 AA x in R)`

A

`3/2`

B

2

C

`5/2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f\left(\frac{1}{2}\right) \) given the functions \( g(x) = x^2 - 1 \) and \( g(f(x)) = x^2 + 4x + 3 \). ### Step-by-step Solution: 1. **Understanding the Functions**: We have two functions: - \( g(x) = x^2 - 1 \) - \( g(f(x)) = x^2 + 4x + 3 \) 2. **Substituting \( x = \frac{1}{2} \) into \( g(f(x)) \)**: We need to evaluate \( g(f(\frac{1}{2})) \): \[ g(f(\frac{1}{2})) = \left(\frac{1}{2}\right)^2 + 4\left(\frac{1}{2}\right) + 3 \] Calculating this: \[ = \frac{1}{4} + 2 + 3 = \frac{1}{4} + \frac{8}{4} + \frac{12}{4} = \frac{21}{4} \] 3. **Setting Up the Equation**: From the definition of \( g(f(x)) \): \[ g(f(x)) = f(x)^2 - 1 \] Therefore, we can set up the equation: \[ f\left(\frac{1}{2}\right)^2 - 1 = \frac{21}{4} \] 4. **Solving for \( f\left(\frac{1}{2}\right) \)**: Rearranging the equation: \[ f\left(\frac{1}{2}\right)^2 = \frac{21}{4} + 1 = \frac{21}{4} + \frac{4}{4} = \frac{25}{4} \] Taking the square root: \[ f\left(\frac{1}{2}\right) = \pm \sqrt{\frac{25}{4}} = \pm \frac{5}{2} \] 5. **Considering the Condition**: It is given that \( f(x) > 0 \) for all \( x \in \mathbb{R} \). Therefore, we take the positive value: \[ f\left(\frac{1}{2}\right) = \frac{5}{2} \] ### Final Answer: Thus, \( f\left(\frac{1}{2}\right) = \frac{5}{2} \).

To solve the problem, we need to find \( f\left(\frac{1}{2}\right) \) given the functions \( g(x) = x^2 - 1 \) and \( g(f(x)) = x^2 + 4x + 3 \). ### Step-by-step Solution: 1. **Understanding the Functions**: We have two functions: - \( g(x) = x^2 - 1 \) - \( g(f(x)) = x^2 + 4x + 3 \) ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE Main Revision Test-9 | JEE-2020

    VMC MODULES ENGLISH|Exercise SECTION 2|5 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos

Similar Questions

Explore conceptually related problems

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

If g(x)=x ^2 +x−1 and (gof)(x)=4x^2−10x+5 , then f(5/4 ) is equal to:

If g(x)=x^3+x-2 and g(f(x))=x^3+3x^2+4x then f(1)+f(2) is equal to ________

If f :R ->R , f(x)=x^3 +3 ,and g:R->R , g(x)=2x + 1 , then f^(-1)(g^(-1)(23)) equals

Let f(x) be a continuous function, AA x in R, f(0) = 1 and f(x) ne x for any x in R , then show f(f(x)) gt x, AA x in R^(+)

If f(x), g(x) be twice differentiable functions on [0,2] satisfying f''(x) = g''(x) , f'(1) = 2g'(1) = 4 and f(2) = 3 g(2) = 9 , then f(x)-g(x) at x = 4 equals (A) 0 (B) 10 (C) 8 (D) 2

If f(x), g(x) be twice differentiable functions on [0,2] satisfying f''(x) = g''(x) , f'(1) = 2g'(1) = 4 and f(2) = 3 g(2) = 9 , then f(x)-g(x) at x = 4 equals (A) 0 (B) 10 (C) 8 (D) 2

A function f is defined by f(x^(2) ) = x^(3) AA x gt 0 then f(4) equals

If f(x)+2f(1-x)=6x(AA x in R) , then the vlaue of (3)/(4)((f(8))/(f'(1))) is equal to

Let f(x) lt 0 AA x in (-oo, 0) and f (x) gt 0 ,AA x in (0,oo) also f (0)=0, Again f'(x) lt 0 ,AA x in (-oo, -1) and f '(x) gt 0, AA x in (-1,oo) also f '(-1)=0 given lim _(x to -oo) f (x)=0 and lim _(x to oo) f (x)=oo and function is twice differentiable. If f'(x) lt 0 AA x in (0,oo)and f'(0)=1 then number of solutions of equation f (x)=x ^(2) is : (a) 1 (b) 2 (c) 3 (d) 4