Home
Class 12
MATHS
If f (6-x ) =f (x), for all then 1/5 int...

If `f (6-x ) =f (x),` for all then `1/5 int _(2)^(3) x [f (x) + f (x+1)]dx` is equal to :

A

`int _(3) ^(4) f (x+z) dx`

B

`int _(3 )^(4) f (x+1) dx`

C

` int _(1) ^(2) f (x+1) dx`

D

`int _(1) ^(3) f (x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ I = \frac{1}{5} \int_{2}^{3} x [f(x) + f(x+1)] \, dx \] given the property \( f(6 - x) = f(x) \) for all \( x \). ### Step 1: Rewrite the Integral We can use the property of integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] In our case, we can set \( a = 2 \) and \( b = 3 \). Therefore, we can rewrite the integral as: \[ I = \frac{1}{5} \int_{2}^{3} x [f(6 - x) + f(6 - (x - 1))] \, dx \] ### Step 2: Substitute the Function Using the property \( f(6 - x) = f(x) \), we can simplify the integral: \[ I = \frac{1}{5} \int_{2}^{3} x [f(x) + f(6 - x + 1)] \, dx \] ### Step 3: Change of Variable Now let’s perform a change of variable in the second part of the integral. Let \( u = 6 - x \). Then, when \( x = 2 \), \( u = 4 \) and when \( x = 3 \), \( u = 3 \). The differential \( dx = -du \). Thus, we can rewrite the integral as: \[ I = \frac{1}{5} \int_{4}^{3} (6 - u) [f(6 - u) + f(6 - (u - 1))] (-du) \] Reversing the limits gives us: \[ I = \frac{1}{5} \int_{3}^{4} (6 - u) [f(u) + f(u - 1)] \, du \] ### Step 4: Add the Two Integrals Now we have two expressions for \( I \): 1. \( I = \frac{1}{5} \int_{2}^{3} x [f(x) + f(x + 1)] \, dx \) 2. \( I = \frac{1}{5} \int_{3}^{4} (6 - u) [f(u) + f(u - 1)] \, du \) Adding these two equations gives: \[ 2I = \frac{1}{5} \left( \int_{2}^{3} x [f(x) + f(x + 1)] \, dx + \int_{3}^{4} (6 - u) [f(u) + f(u - 1)] \, du \right) \] ### Step 5: Evaluate the Integral Now, we can evaluate the integrals separately. However, we notice that the second integral can be transformed back into the first integral's form. After simplification and using the property of the function, we find: \[ I = \frac{1}{2} \int_{2}^{3} f(x) \, dx \] ### Step 6: Final Calculation Thus, we find that: \[ I = \frac{1}{5} \cdot 2 \cdot \int_{2}^{3} f(x) \, dx \] This leads us to conclude that: \[ I = \frac{1}{5} \cdot 2 \cdot \int_{2}^{3} f(x) \, dx = \frac{2}{5} \int_{2}^{3} f(x) \, dx \] ### Conclusion The final answer is: \[ \frac{1}{5} \int_{2}^{3} x [f(x) + f(x + 1)] \, dx = \text{(value depending on } f \text{)} \]

To solve the problem, we need to evaluate the integral \[ I = \frac{1}{5} \int_{2}^{3} x [f(x) + f(x+1)] \, dx \] given the property \( f(6 - x) = f(x) \) for all \( x \). ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE Main Revision Test-9 | JEE-2020

    VMC MODULES ENGLISH|Exercise SECTION 2|5 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos

Similar Questions

Explore conceptually related problems

int (f'(x))/( f(x) log(f(x)))dx is equal to

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

If f(x) in inegrable over [1,2] then int_(1)^(2) f(x) dx is equal to :

Let f (x) be a twice differentiable function defined on (-oo,oo) such that f (x) =f (2-x)and f '((1)/(2 )) =f' ((1)/(4))=0. Then int _(-1) ^(1) f'(1+ x ) x ^(2) e ^(x ^(2))dx is equal to :

If f(a+b+1-x)=f(x) , for all x where a and b are fixed positive real numbers, the (1)/(a+b) int_(a)^(b) x(f(x)+f(x+1) dx is equal to :

If int (e^x-1)/(e^x+1)dx=f(x)+C, then f(x) is equal to

Let f(x) be a function defined on R satisfyin f(x) =f(1-x) for all x in R . Then int_(-1//2)^(1//2) f(x+(1)/(2))sin x dx equals

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to