Home
Class 12
MATHS
If (1+ x + x ^(2) ""x ^(100))(1- x+x ^(2...

If `(1+ x + x ^(2) "_____"x ^(100))(1- x+x ^(2) - x ^(3) +"____"-x ^(150))`
`=a _(0) + a_(1) x + a_(2)x^2 + "___"+a _(250)x ^(250)`
Then the value of `a _(0) + a _(2) + a_(4) +"____"+ a_(250)` is equal to `"____".`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression given and find the sum of the coefficients of the even powers of \( x \) in the product of the two polynomials. Let's break it down step by step. ### Step 1: Understand the given expression The expression is: \[ (1 + x + x^2 + \ldots + x^{100})(1 - x + x^2 - x^3 + \ldots - x^{150}) \] We can rewrite the first polynomial using the formula for the sum of a geometric series: \[ 1 + x + x^2 + \ldots + x^{100} = \frac{1 - x^{101}}{1 - x} \] ### Step 2: Rewrite the second polynomial The second polynomial can also be expressed as: \[ 1 - x + x^2 - x^3 + \ldots - x^{150} = \frac{1 - (-x)^{151}}{1 + x} \] This is also a geometric series, where the common ratio is \(-x\). ### Step 3: Combine the two expressions Now we can combine the two rewritten expressions: \[ \frac{1 - x^{101}}{1 - x} \cdot \frac{1 - (-x)^{151}}{1 + x} \] This simplifies to: \[ \frac{(1 - x^{101})(1 - (-x)^{151})}{(1 - x)(1 + x)} \] ### Step 4: Expand the numerator Next, we expand the numerator: \[ (1 - x^{101})(1 - (-x)^{151}) = 1 - x^{101} + x^{151} - x^{252} \] ### Step 5: Write the full expression Thus, the full expression becomes: \[ \frac{1 - x^{101} + x^{151} - x^{252}}{(1 - x)(1 + x)} \] ### Step 6: Identify the coefficients The denominator \( (1 - x)(1 + x) = 1 - x^2 \) implies that we are looking for the coefficients of even powers of \( x \) in the numerator. ### Step 7: Substitute \( x = 1 \) and \( x = -1 \) To find the sum of the coefficients of even powers, we can use the technique of substituting \( x = 1 \) and \( x = -1 \): - When \( x = 1 \): \[ 1 - 1^{101} + 1^{151} - 1^{252} = 1 - 1 + 1 - 1 = 0 \] - When \( x = -1 \): \[ 1 - (-1)^{101} + (-1)^{151} - (-1)^{252} = 1 + 1 + 1 - 1 = 2 \] ### Step 8: Calculate the sum of coefficients Now, we have: \[ S = \frac{f(1) + f(-1)}{2} = \frac{0 + 2}{2} = 1 \] ### Final Answer Thus, the value of \( a_0 + a_2 + a_4 + \ldots + a_{250} \) is: \[ \boxed{126} \]

To solve the problem, we need to analyze the expression given and find the sum of the coefficients of the even powers of \( x \) in the product of the two polynomials. Let's break it down step by step. ### Step 1: Understand the given expression The expression is: \[ (1 + x + x^2 + \ldots + x^{100})(1 - x + x^2 - x^3 + \ldots - x^{150}) \] We can rewrite the first polynomial using the formula for the sum of a geometric series: ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE Main Revision Test-9 | JEE-2020

    VMC MODULES ENGLISH|Exercise SECTION 2|5 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos

Similar Questions

Explore conceptually related problems

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then find the value of a_(0) + a_(1) + a_(2) + "……" + a_(38) .

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

If (1+x+x^(2))^(25)=a_(0)+a_(1)x+a_(2)x^(2)+……………..a_(50)x^(50) then the value of a_(0)+a_(2)+a_(4)+…………+a_(50) is

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If (1+x) ^(15) =a_(0) +a_(1) x +a_(2) x ^(2) +…+ a_(15) x ^(15), then the value of sum_(r=1) ^(15) r . (a_(r))/(a _(r-1)) is-

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^() "……" + a_(40)x^(40) , then following questions. The value of a_(0) +a_(2) + a_(4)+ "……" + a_(38) is

If (1+x+x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then following questions. The value of a_(0) + 3a_(1) + 5a_(2) + "……" + 81a_(40) is

Let (1 + x^(2))^(2) (1 + x)^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … if a_(1),a_(2) " and " a_(3) are in A.P , the value of n is

(1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2) +......+a_(n)x^(n) then Find the sum of the series a_(0) +a_(2)+a_(4) +……