Home
Class 12
MATHS
Let x^(k)+y^(k) , (a,k gt 0) and (dy)/(d...

Let `x^(k)+y^(k) , (a,k gt 0) and (dy)/(dx) +((y)/(x))^((1)/(3)) =0` then k is :

A

1

B

`-7`

C

7

D

`-7`

Text Solution

Verified by Experts

The correct Answer is:
C

`(dy)/(dx) = e^(2x - 3y) + 1`
Put `2x - 3y = t`
Differentiating both sides wr.t x
`2 - 3 (dy)/(dx) =(dt)/(dx)`
`(dy)/(dx) = - (1)/(3) ((dt)/(dx) -2) implies - (1)/(3) (dt)/(dx) + (2)/(3) = e^(t) + 1`
`(dt)/(dx) - 2 = - 3e^(t) - 3, (dt)/(dx) = 3e^(t) - 1`
`int (dt)/(-3e^(t) - 1) = int dx implies - int (e^(-t) dt)/(3 + e^(-t)) - int 1dx`
`implies log (3 + e^(-t)) = x + c, log (3 + e^(3y - 2x)) = x + c`
Given at x = 0, y = 0 , log 4 = C
`log(3 + e^(3y - 2x)) - log 4 = x`, `(3 + e^(3y - 2x))/(4) = e^(x)`
`3e^(2x) + e^(3y) = 4 e^(3x) implies y = log (4e^(3x) - 3e^(2x))^(1//3) implies A + B = 7`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST- 24

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION - 2)|5 Videos
  • JEE MAIN REVISION TEST- 16

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE Main Revision Test-20 | JEE-2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let x^k+y^k =a^k, (a,k gt 0) and (dy)/(dx) +(y/x)^(5//3)=0 , then k=

If x^(3) + 3 (ky)^(3) = k^(3) and (dy)/(dx) + (x^(2))/(24 y^(2)) = 0 , then k is (where k gt 0)

If (d^(2)x)/(dy^(2)) ((dy)/(dx))^(3) + (d^(2) y)/(dx^(2)) = k , then k is equal to

If (d^2x)/(dy^2)((dy)/(dx))^3+(d^2y)/(dx^2)=K then the value of k is equal to

If the independent variable x is changed to y , then the differential equation x(d^2y)/(dx^2)+((dy)/(dx))^3-(dy)/(dx)=0 is changed to x(d^2x)/(dy^2)+((dx)/(dy))^2=k where k equals____

If the independent variable x is changed to y , then the differential equation x(d^2y)/(dx^2)+((dy)/(dx))^3-(dy)/(dx)=0 is changed to x(d^2x)/(dy^2)+((dx)/(dy))^2=k where k equals____

If K is constant such that xy + k = e ^(((x-1)^2)/(2)) satisfies the differential equation x . ( dy )/( dx) = (( x^2 - x-1) y+ (x-1) and y (1) =0 then find the value of K .

Let y =f (x) satisfies the differential equation xy (1+y) dx =dy . If f (0)=1 and f (2) =(e ^(2))/(k-e ^(2)), then find the value of k.

The solutions of y=x((dy)/(dx)+((dy)/(dx))^3) are given by (where p=(dy)/(dx) and k is constant)

If the solution of the differential equation (1+e^((x)/(y)))dx+e^((x)/(y))(1-(x)/(y))dy=0 is x+kye^((x)/(y))=C (where, C is an arbitrary constant), then the value of k is equal to