Home
Class 12
MATHS
If tanalpha,tan beta are roots of the eq...

If `tanalpha,tan beta` are roots of the equation `(1 + cos theta) tan^(2) x - lambda tan x = 1 - cos theta` where `theta in (0, (pi)/(2))` and `cos^(2) (alpha + beta) = (1)/(51)` then `lambda` is :

A

`5sqrt(2)`

B

`10 sqrt(2)`

C

10

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow a systematic approach. ### Step-by-Step Solution: 1. **Understanding the Equation**: The given equation is: \[ (1 + \cos \theta) \tan^2 x - \lambda \tan x = 1 - \cos \theta \] This is a quadratic equation in terms of \(\tan x\). 2. **Identifying Roots**: We know that \(\tan \alpha\) and \(\tan \beta\) are the roots of this quadratic equation. By Vieta's formulas, we can express the sum and product of the roots: - Sum of the roots: \[ \tan \alpha + \tan \beta = \frac{\lambda}{1 + \cos \theta} \] - Product of the roots: \[ \tan \alpha \tan \beta = \frac{1 - \cos \theta}{1 + \cos \theta} \] 3. **Using the Cosine Identity**: We are given: \[ \cos^2(\alpha + \beta) = \frac{1}{51} \] Using the identity \(\cos^2(\alpha + \beta) = \frac{1}{1 + \tan^2(\alpha + \beta)}\), we can write: \[ 51 = 1 + \tan^2(\alpha + \beta) \] Therefore: \[ \tan^2(\alpha + \beta) = 50 \] 4. **Expressing \(\tan(\alpha + \beta)\)**: We know that: \[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \] Substituting the values from Vieta's formulas: \[ \tan(\alpha + \beta) = \frac{\frac{\lambda}{1 + \cos \theta}}{1 - \frac{1 - \cos \theta}{1 + \cos \theta}} = \frac{\frac{\lambda}{1 + \cos \theta}}{\frac{2\cos \theta}{1 + \cos \theta}} = \frac{\lambda}{2\cos \theta} \] 5. **Setting Up the Equation**: Since we have \(\tan^2(\alpha + \beta) = 50\), we can equate: \[ \left(\frac{\lambda}{2\cos \theta}\right)^2 = 50 \] 6. **Solving for \(\lambda\)**: Squaring both sides gives: \[ \frac{\lambda^2}{4\cos^2 \theta} = 50 \] Rearranging gives: \[ \lambda^2 = 200\cos^2 \theta \] 7. **Finding \(\lambda\)**: Taking the square root: \[ \lambda = \sqrt{200\cos^2 \theta} = 10\sqrt{2}|\cos \theta| \] Since \(\theta\) is in \((0, \frac{\pi}{2})\), \(\cos \theta\) is positive, thus: \[ \lambda = 10\sqrt{2}\cos \theta \] ### Final Answer: The value of \(\lambda\) is \(10\sqrt{2}\cos \theta\).

To solve the given problem, we will follow a systematic approach. ### Step-by-Step Solution: 1. **Understanding the Equation**: The given equation is: \[ (1 + \cos \theta) \tan^2 x - \lambda \tan x = 1 - \cos \theta ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST- 24

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION - 2)|5 Videos
  • JEE MAIN REVISION TEST- 16

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE Main Revision Test-20 | JEE-2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are roots of the equation a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha, beta are the roots of the equation a cos theta + b sin theta = c , then prove that cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2) .

If alpha and beta are the roots of equation (k+1) tan^(2)x-sqrt2lambda tan(x)=1-k and tan^(2)(alpha+beta)=50 . Find the value of lambda

Let alpha and beta be the roots of the quadratic equation x^(2) sin theta - x (sin theta cos theta + 1) + cos theta = 0 (0 lt theta lt 45^(@)) , and alpha lt beta . Then Sigma_(n=0)^(oo) (alpha^(n) + ((-1)^(n))/(beta^(n))) is equal to

If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the equation 8x ^(2) -26x + 15 =0, then find the value of cos (alpha + beta).

Prove that (1 - cos 2 theta)/( sin 2 theta) = tan theta.

For all theta, tan theta+ cos theta + tan (-theta) + cos(-theta)=

If alpha and beta are roots of x^(2)-(sqrt(1-cos 2 theta))x+theta=0 , where 0 lt theta lt (pi)/2 . Then lim_(theta to 0^(+))(1/(alpha)+1/(beta)) is

If tan (alpha )/(2) : tan ""(beta)/(2) = 1 : sqrt3 show that cos beta = ( 2 cos alpha - 1 )/( 2- cos alpha ).