Home
Class 12
MATHS
Let x(1) lt x(2) lt x(3) lt x(4) lt x(5)...

Let `x_(1) lt x_(2) lt x_(3) lt x_(4) lt x_(5)` and `y_(1) lt y_(2) lt y_(3) lt y_(4) lt y_(5)` are in AP such that `underset(I = 1)overset(5)(sum) x_(i) = underset(I = 1)overset(5)(sum) y_(i) = 25` and `underset(I =1)overset(5)(II) x_(i) = underset(I = 1)overset(5)(II) y_(i) = 0` then `|y_(5) - x_(5)|`

A. `5//2`
B. 5
C. 10
D. 15

A

`5//2`

B

5

C

10

D

15

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the information given about the two arithmetic progressions (APs) \( x_1, x_2, x_3, x_4, x_5 \) and \( y_1, y_2, y_3, y_4, y_5 \). ### Step 1: Define the terms of the APs Let the first arithmetic progression be defined as: - \( x_1 = a - 2d \) - \( x_2 = a - d \) - \( x_3 = a \) - \( x_4 = a + d \) - \( x_5 = a + 2d \) Similarly, for the second arithmetic progression: - \( y_1 = b - 2e \) - \( y_2 = b - e \) - \( y_3 = b \) - \( y_4 = b + e \) - \( y_5 = b + 2e \) ### Step 2: Use the sum condition We know that: \[ \sum_{i=1}^{5} x_i = \sum_{i=1}^{5} y_i = 25 \] Calculating the sum of the \( x_i \): \[ x_1 + x_2 + x_3 + x_4 + x_5 = (a - 2d) + (a - d) + a + (a + d) + (a + 2d) = 5a \] Thus, we have: \[ 5a = 25 \implies a = 5 \] Now calculating the sum of the \( y_i \): \[ y_1 + y_2 + y_3 + y_4 + y_5 = (b - 2e) + (b - e) + b + (b + e) + (b + 2e) = 5b \] Thus, we have: \[ 5b = 25 \implies b = 5 \] ### Step 3: Use the product condition We also know that: \[ \prod_{i=1}^{5} x_i = \prod_{i=1}^{5} y_i = 0 \] Since the product of the \( x_i \) is zero, at least one of the \( x_i \) must be zero. We can find the roots of the polynomial formed by the \( x_i \): \[ x_1 = 5 - 2d, \quad x_2 = 5 - d, \quad x_3 = 5, \quad x_4 = 5 + d, \quad x_5 = 5 + 2d \] Setting \( x_3 = 5 = 0 \) gives us \( d = \frac{5}{2} \) or \( d = 5 \). ### Step 4: Calculate the values of \( x_i \) and \( y_i \) 1. If \( d = \frac{5}{2} \): - \( x_1 = 0 \) - \( x_2 = \frac{5}{2} \) - \( x_3 = 5 \) - \( x_4 = \frac{15}{2} \) - \( x_5 = 10 \) 2. If \( d = 5 \): - \( x_1 = -5 \) - \( x_2 = 0 \) - \( x_3 = 5 \) - \( x_4 = 10 \) - \( x_5 = 15 \) ### Step 5: Calculate \( y_i \) values For both cases, we can find \( y_i \) similarly using \( e \): 1. If \( e = \frac{5}{2} \): - \( y_1 = -5 \) - \( y_2 = 0 \) - \( y_3 = 5 \) - \( y_4 = 10 \) - \( y_5 = 15 \) 2. If \( e = 5 \): - \( y_1 = 0 \) - \( y_2 = 5 \) - \( y_3 = 10 \) - \( y_4 = 15 \) - \( y_5 = 20 \) ### Step 6: Calculate \( |y_5 - x_5| \) For the first case: \[ |y_5 - x_5| = |15 - 10| = 5 \] For the second case: \[ |y_5 - x_5| = |20 - 15| = 5 \] ### Conclusion In both scenarios, we find that: \[ |y_5 - x_5| = 5 \] Thus, the answer is \( \boxed{5} \).

To solve the problem, we need to analyze the information given about the two arithmetic progressions (APs) \( x_1, x_2, x_3, x_4, x_5 \) and \( y_1, y_2, y_3, y_4, y_5 \). ### Step 1: Define the terms of the APs Let the first arithmetic progression be defined as: - \( x_1 = a - 2d \) - \( x_2 = a - d \) - \( x_3 = a \) - \( x_4 = a + d \) ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST- 24

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION - 2)|5 Videos
  • JEE MAIN REVISION TEST- 16

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE Main Revision Test-20 | JEE-2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

overset(10)underset(i=3)sum5

If x = underset(n-0)overset(oo)sum a^(n), y= underset(n =0)overset(oo)sum b^(n), z = underset(n =0)overset(oo)sum C^(n) where a,b,c are in A.P. and |a| lt 1, |b| lt 1, |c| lt 1 , then x,y,z are in

In the reaction X + Y underset(5^(@)C)overset(NaOH)(rarr) CH_(3)-overset(OH)overset(|)(CH)-underset(CH_(3))underset(|)(CH)-CHO (X) and (Y) Will respectively be :

For x_(1), x_(2), y_(1), y_(2) in R if 0 lt x_(1)lt x_(2)lt y_(1) = y_(2) and z_(1) = x_(1) + i y_(1), z_(2) = x_(2)+ iy_(2) and z_(3) = (z_(1) + z_(2))//2, then z_(1) , z_(2) , z_(3) satisfy :

If the median of the data x_(1), x_(2), x_(3), x_(4), x_(5),x_(6), x_(7), x_(8) " is " alpha and x_(1) lt x_(2) lt x_(3) lt x_(4) lt x_(5) lt x_(6) lt x_(7) lt x_(8) , then the median of x_(3), x_(4), x_(5), x_(6) is

In the following reaction sequence Y is, PhOCOCH_(3) underset(Delta)overset(AlCl_(3))rarr (X) underset(NaOH)overset(I_(2))rarr (Y)

The inequality x(lambda - x)lt y(lambda - y)AA x, y with x lt y lt 1 is always true if

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

3y - 5x lt 15

If x lt 0 , lt 0 , x + y +(x)/4=(1)/(2) and (x+y)((x)/y)=-(1)/(2) then :