Home
Class 12
MATHS
If g(x) = 2x^(2) + 3x - 4 and g (f(x)) =...

If `g(x) = 2x^(2) + 3x - 4` and `g (f(x)) = 8x^(2) + 14 x + 1` then f (2) =

A

3

B

5

C

`-3`

D

`-5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given functions and the equation we need to solve. ### Step 1: Write down the given functions We have: - \( g(x) = 2x^2 + 3x - 4 \) - \( g(f(x)) = 8x^2 + 14x + 1 \) ### Step 2: Substitute \( f(x) \) into \( g(x) \) We know that \( g(f(x)) \) can be expressed as: \[ g(f(x)) = 2(f(x))^2 + 3f(x) - 4 \] This means we can set up the equation: \[ 2(f(x))^2 + 3f(x) - 4 = 8x^2 + 14x + 1 \] ### Step 3: Rearrange the equation Rearranging the equation gives us: \[ 2(f(x))^2 + 3f(x) - 4 - (8x^2 + 14x + 1) = 0 \] This simplifies to: \[ 2(f(x))^2 + 3f(x) - 8x^2 - 14x - 5 = 0 \] ### Step 4: Substitute \( x = 2 \) Now, we need to find \( f(2) \). We substitute \( x = 2 \) into the equation: \[ 2(f(2))^2 + 3f(2) - 8(2^2) - 14(2) - 5 = 0 \] Calculating the terms: \[ 2(f(2))^2 + 3f(2) - 8(4) - 14(2) - 5 = 0 \] \[ 2(f(2))^2 + 3f(2) - 32 - 28 - 5 = 0 \] \[ 2(f(2))^2 + 3f(2) - 65 = 0 \] ### Step 5: Let \( f(2) = t \) Let \( f(2) = t \). The equation becomes: \[ 2t^2 + 3t - 65 = 0 \] ### Step 6: Solve the quadratic equation Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 2 \), \( b = 3 \), and \( c = -65 \). \[ t = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 2 \cdot (-65)}}{2 \cdot 2} \] Calculating the discriminant: \[ = \frac{-3 \pm \sqrt{9 + 520}}{4} \] \[ = \frac{-3 \pm \sqrt{529}}{4} \] \[ = \frac{-3 \pm 23}{4} \] ### Step 7: Calculate the possible values for \( t \) Calculating the two possible values: 1. \( t = \frac{20}{4} = 5 \) 2. \( t = \frac{-26}{4} = -\frac{13}{2} \) ### Step 8: Conclusion Thus, the possible values for \( f(2) \) are \( 5 \) and \( -\frac{13}{2} \). However, since we are looking for a function value, we take the positive value: \[ f(2) = 5 \] ### Final Answer \[ f(2) = 5 \]

To solve the problem step by step, we start with the given functions and the equation we need to solve. ### Step 1: Write down the given functions We have: - \( g(x) = 2x^2 + 3x - 4 \) - \( g(f(x)) = 8x^2 + 14x + 1 \) ### Step 2: Substitute \( f(x) \) into \( g(x) \) ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST- 24

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION - 2)|5 Videos
  • JEE MAIN REVISION TEST- 16

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE Main Revision Test-20 | JEE-2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

If f(x) = x^(2) + x + 5 and g(x) = sqrt(x) , then what is the value of (g(4))/(f(1)) ?

If g(x)=x^(2)+x-1 and g(f(x))=4x^(2)-10x+5 then find f((5)/(4))

If f(x)=2x^(2)-4 and g(x)=2^(x) , the value of g(f(1)) is

Let f(x) = x^(2) + 2x +5 and g(x) = x^(3) - 1 be two real functions. Find (f+g)(x), (f-g)(x), (fg)(x) and ((f)/(g))(x) .

If f(x) = 2x^2 - 4 and g(x) = 2x , for what values of x will f(x) = g(x) ?

Given functions f(x) = 2x + 1 and g(x) = x^(2) - 4 , what is the value of f(g(-3)) ?

If f(g(x))=4x^(2)-8x and f(x)=x^(2)-4, then g(x)=

If f(x), g(x) be twice differentiable functions on [0,2] satisfying f''(x) = g''(x) , f'(1) = 2g'(1) = 4 and f(2) = 3 g(2) = 9 , then f(x)-g(x) at x = 4 equals (A) 0 (B) 10 (C) 8 (D) 2

If f(x), g(x) be twice differentiable functions on [0,2] satisfying f''(x) = g''(x) , f'(1) = 2g'(1) = 4 and f(2) = 3 g(2) = 9 , then f(x)-g(x) at x = 4 equals (A) 0 (B) 10 (C) 8 (D) 2