Home
Class 12
MATHS
If angle bisector of overline(a) = 2hat(...

If angle bisector of `overline(a) = 2hat(i) + 3 hat(j) + 4 hat(k)` and `overline(b) = 4hat(i) - 2 hat(j) + 3 hat(k)` is `overline(c ) = alpha hat(i) + 2 hat(j) + beta hat(k)` then

A

`vec(c ).hat(k) + 7 = 0`

B

`vec(c ) .hat(k) - 14 = 0`

C

`vec(c ) .hat(k) + 15 = 0`

D

`vec(c ) .hat(k) - 7 = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the outlined approach to find the angle bisector vector \( \overline{c} \) given the vectors \( \overline{a} \) and \( \overline{b} \). ### Step 1: Define the vectors We are given: \[ \overline{a} = 2\hat{i} + 3\hat{j} + 4\hat{k} \] \[ \overline{b} = 4\hat{i} - 2\hat{j} + 3\hat{k} \] ### Step 2: Calculate the magnitudes of the vectors First, we calculate the magnitude of \( \overline{a} \): \[ |\overline{a}| = \sqrt{2^2 + 3^2 + 4^2} = \sqrt{4 + 9 + 16} = \sqrt{29} \] Next, we calculate the magnitude of \( \overline{b} \): \[ |\overline{b}| = \sqrt{4^2 + (-2)^2 + 3^2} = \sqrt{16 + 4 + 9} = \sqrt{29} \] ### Step 3: Find the unit vectors Now we find the unit vectors \( \hat{a} \) and \( \hat{b} \): \[ \hat{a} = \frac{\overline{a}}{|\overline{a}|} = \frac{2\hat{i} + 3\hat{j} + 4\hat{k}}{\sqrt{29}} \] \[ \hat{b} = \frac{\overline{b}}{|\overline{b}|} = \frac{4\hat{i} - 2\hat{j} + 3\hat{k}}{\sqrt{29}} \] ### Step 4: Write the angle bisector vector The angle bisector \( \overline{c} \) can be expressed as: \[ \overline{c} = \lambda (\hat{a} + \hat{b}) \] Substituting the unit vectors: \[ \overline{c} = \lambda \left( \frac{2\hat{i} + 3\hat{j} + 4\hat{k}}{\sqrt{29}} + \frac{4\hat{i} - 2\hat{j} + 3\hat{k}}{\sqrt{29}} \right) \] Combining the vectors: \[ \overline{c} = \lambda \left( \frac{(2 + 4)\hat{i} + (3 - 2)\hat{j} + (4 + 3)\hat{k}}{\sqrt{29}} \right) = \lambda \left( \frac{6\hat{i} + 1\hat{j} + 7\hat{k}}{\sqrt{29}} \right) \] ### Step 5: Express \( \overline{c} \) in terms of components This gives us: \[ \overline{c} = \frac{6\lambda}{\sqrt{29}} \hat{i} + \frac{\lambda}{\sqrt{29}} \hat{j} + \frac{7\lambda}{\sqrt{29}} \hat{k} \] ### Step 6: Compare with given form of \( \overline{c} \) We know that: \[ \overline{c} = \alpha \hat{i} + 2 \hat{j} + \beta \hat{k} \] From this, we can equate the coefficients: 1. \( \alpha = \frac{6\lambda}{\sqrt{29}} \) 2. \( 2 = \frac{\lambda}{\sqrt{29}} \) 3. \( \beta = \frac{7\lambda}{\sqrt{29}} \) ### Step 7: Solve for \( \lambda \) From the second equation: \[ \lambda = 2\sqrt{29} \] ### Step 8: Substitute \( \lambda \) to find \( \beta \) Substituting \( \lambda \) into the expression for \( \beta \): \[ \beta = \frac{7(2\sqrt{29})}{\sqrt{29}} = 14 \] ### Final Result Thus, the values of \( \alpha \) and \( \beta \) are: - \( \alpha = \frac{6(2\sqrt{29})}{\sqrt{29}} = 12 \) - \( \beta = 14 \) ### Conclusion The angle bisector vector \( \overline{c} \) is given by: \[ \overline{c} = 12\hat{i} + 2\hat{j} + 14\hat{k} \]

To solve the problem step by step, we will follow the outlined approach to find the angle bisector vector \( \overline{c} \) given the vectors \( \overline{a} \) and \( \overline{b} \). ### Step 1: Define the vectors We are given: \[ \overline{a} = 2\hat{i} + 3\hat{j} + 4\hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST- 24

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION - 2)|5 Videos
  • JEE MAIN REVISION TEST- 16

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE Main Revision Test-20 | JEE-2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .

Find the volume of the parallelepiped whose edges are represented by the vectors overset(to) (a) = 2 hat(i) - 3 hat(j) -4 hat(k), overset(to)( b) = hat(i) + 2 hat(j) - hat(k) , overset(to)( c) =3 hat(i) - hat(j) - 2 hat(k) .

Find the volume of the parallelopiped whose edges are represented by vec(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) , vec(b) = hat(i) + 2 hat(j) - hat(k), vec(c) = 3 hat(i) - hat(j) + 2 hat(k)

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(k) and 2 hat(i) + hat(j) - 3 hat(k) is

Given two vectors A = -4hat(i) + 4hat(j) + 2hat(k) and B = 2hat(i) - hat(j) - hat(k) . The angle made by (A+B) with hat(i) + 2hat(j) - 4hat(k) is :

Find the projection of vec(b)+ vec(c ) on vec(a) where vec(a)= 2 hat(i) -2hat(j) + hat(k), vec(b)= hat(i) + 2hat(j)- 2hat(k), vec(c ) = 2hat(i) - hat(j) + 4hat(k)

The angle between the lines overset(to)( r)=(4 hat(i) - hat(j) )+ lambda(2 hat(i) + hat(j) - 3hat(k) ) and overset(to) (r )=( hat(i) -hat(j) + 2 hat(k) ) + mu (hat(i) - 3 hat(j) - 2 hat(k) ) is

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Find the unit vector perpendicular to both 2hat(i) + 3hat(j)+ hat(k) and hat(i)-hat(j)+ 4hat(k)