Home
Class 12
PHYSICS
If (i) A = 1, B = 0, C = 1, (ii) A = B =...

If (i) A = 1, B = 0, C = 1, (ii) A = B = C = 1, (iii) A = B = C = 0 and (iv) A = 1 = B, C = 0 then which one of the following options will satisfy the expression, `X=bar(A.B.C)+bar(B.C.A)+bar(C.A.B)`

A

(1, 0, 1, 1)

B

(1, 0, 1, 0)

C

(0, 1, 1, 1)

D

`(1, 1, 1, 0)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( X = \overline{A \cdot B \cdot C} + \overline{B \cdot C \cdot A} + \overline{C \cdot A \cdot B} \) for the given values of A, B, and C, we will evaluate the expression for each case step by step. ### Step 1: Evaluate for \( (i) A = 1, B = 0, C = 1 \) 1. Substitute the values into the expression: \[ X = \overline{1 \cdot 0 \cdot 1} + \overline{0 \cdot 1 \cdot 1} + \overline{1 \cdot 1 \cdot 0} \] 2. Calculate each term: - \( \overline{1 \cdot 0 \cdot 1} = \overline{0} = 1 \) - \( \overline{0 \cdot 1 \cdot 1} = \overline{0} = 1 \) - \( \overline{1 \cdot 1 \cdot 0} = \overline{0} = 1 \) 3. Combine the results: \[ X = 1 + 1 + 1 = 1 \] ### Step 2: Evaluate for \( (ii) A = B = C = 1 \) 1. Substitute the values: \[ X = \overline{1 \cdot 1 \cdot 1} + \overline{1 \cdot 1 \cdot 1} + \overline{1 \cdot 1 \cdot 1} \] 2. Calculate each term: - \( \overline{1 \cdot 1 \cdot 1} = \overline{1} = 0 \) - \( \overline{1 \cdot 1 \cdot 1} = \overline{1} = 0 \) - \( \overline{1 \cdot 1 \cdot 1} = \overline{1} = 0 \) 3. Combine the results: \[ X = 0 + 0 + 0 = 0 \] ### Step 3: Evaluate for \( (iii) A = B = C = 0 \) 1. Substitute the values: \[ X = \overline{0 \cdot 0 \cdot 0} + \overline{0 \cdot 0 \cdot 0} + \overline{0 \cdot 0 \cdot 0} \] 2. Calculate each term: - \( \overline{0 \cdot 0 \cdot 0} = \overline{0} = 1 \) - \( \overline{0 \cdot 0 \cdot 0} = \overline{0} = 1 \) - \( \overline{0 \cdot 0 \cdot 0} = \overline{0} = 1 \) 3. Combine the results: \[ X = 1 + 1 + 1 = 1 \] ### Step 4: Evaluate for \( (iv) A = 1, B = 1, C = 0 \) 1. Substitute the values: \[ X = \overline{1 \cdot 1 \cdot 0} + \overline{1 \cdot 0 \cdot 1} + \overline{0 \cdot 1 \cdot 1} \] 2. Calculate each term: - \( \overline{1 \cdot 1 \cdot 0} = \overline{0} = 1 \) - \( \overline{1 \cdot 0 \cdot 1} = \overline{0} = 1 \) - \( \overline{0 \cdot 1 \cdot 1} = \overline{0} = 1 \) 3. Combine the results: \[ X = 1 + 1 + 1 = 1 \] ### Summary of Results - For \( (i) \): \( X = 1 \) - For \( (ii) \): \( X = 0 \) - For \( (iii) \): \( X = 1 \) - For \( (iv) \): \( X = 1 \) ### Final Answer The expression \( X \) satisfies the conditions for the inputs \( (i) \), \( (iii) \), and \( (iv) \) with \( X = 1 \) and for \( (ii) \) with \( X = 0 \).

To solve the expression \( X = \overline{A \cdot B \cdot C} + \overline{B \cdot C \cdot A} + \overline{C \cdot A \cdot B} \) for the given values of A, B, and C, we will evaluate the expression for each case step by step. ### Step 1: Evaluate for \( (i) A = 1, B = 0, C = 1 \) 1. Substitute the values into the expression: \[ X = \overline{1 \cdot 0 \cdot 1} + \overline{0 \cdot 1 \cdot 1} + \overline{1 \cdot 1 \cdot 0} \] ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 28

    VMC MODULES ENGLISH|Exercise PHYSICS (SECTION-2)|5 Videos
  • JEE MAIN REVISION TEST - 27 - JEE -2020

    VMC MODULES ENGLISH|Exercise PHYSICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 29 (2020)

    VMC MODULES ENGLISH|Exercise PHYSICS|25 Videos

Similar Questions

Explore conceptually related problems

Let X = A . bar (BC) . Evaluate X for (a) A = 1 , B = 0 , C = 1 , (b) A = B = C = 1 and ( c) A = B = C = 0.

If matrix A =[{:( a,b,c),(b,c,a),(c,a,b) :}] where a,b,c are real positive number ,abc =1 and A^(T) A = I then Which of the following is/are true

Let X=A bar(BC)+B bar(CA)+C bar(AB) .Evalute X for (a) A=1,B=0,C=1 (b) A=B=C=1 (c) A=B=C=0

if (a)/(b + c) = (b)/(c + a) = (c)/(a + b) and a + b + c = 0 : show that each given ratio is equal to -1 .

If a, b, and c are not equal to 0 or 1 and if a^x = b, b^y = c and c^x = a then xyz =

If A,B,C,D are angles of a quadrilateral, then sin A + sin (B+ C + D) = (i) 0 (ii) 1 (iii) 2 (iv) None of these

which of the following is // are true for Delta= |{:(a^(2),,1,,a+c),(0,,b^(2)+1,,b+c),(0,,b+c,,c^(2)+1):}| ?

If a,b,c are real, a ne 0, b ne 0, c ne 0 and a+b + c ne 0 and 1/a + 1/b + 1/c = 1/(a+b+c) , then (a+b) (b+c)(c+a) =

If A=[{:(,2),(,5):}], B=[{:(,1),(,4):}] and C=[{:(,6),(,-2):}] , find (i) B+C (ii) A-C (iii) A+B-C (iv) A-B+C

Using the property of determinants and without expanding, prove that: |1b c a(b+c)1c a b(c+a)1a b x(a+b)|=0