Home
Class 12
MATHS
if (1+x+x^2)^(10)(1-x+x^2)^(10)=a0+ax+a2...

if `(1+x+x^2)^(10)(1-x+x^2)^(10)=a_0+a_x+a_2x^2+a_3x^3+...........+a_(40)x^(40)` then `a_1+a_3+.....+a_(39)` is equal to

A

0

B

`(3^(10)-1)/(2)`

C

`3^(10)`

D

`4^(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the coefficients of the odd powers of \(x\) in the expansion of \((1+x+x^2)^{10}(1-x+x^2)^{10}\). ### Step-by-step Solution: 1. **Understanding the Expression**: We start with the expression: \[ (1+x+x^2)^{10}(1-x+x^2)^{10} \] We can denote this as \(f(x)\). 2. **Finding \(f(1)\)**: To find the sum of all coefficients \(a_0 + a_1 + a_2 + \ldots + a_{40}\), we evaluate \(f(1)\): \[ f(1) = (1+1+1)^{10}(1-1+1)^{10} = 3^{10} \cdot 1^{10} = 3^{10} \] 3. **Finding \(f(-1)\)**: Next, we find \(f(-1)\) to help us isolate the odd coefficients: \[ f(-1) = (1-1+1)^{10}(1+1+1)^{10} = 1^{10} \cdot 3^{10} = 3^{10} \] 4. **Using the Results**: The coefficients of \(f(x)\) can be expressed as: \[ f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_{40} x^{40} \] From our evaluations: - \(f(1) = a_0 + a_1 + a_2 + a_3 + \ldots + a_{40} = 3^{10}\) - \(f(-1) = a_0 - a_1 + a_2 - a_3 + \ldots + a_{40} = 3^{10}\) 5. **Setting Up the Equations**: We have two equations: \[ a_0 + a_1 + a_2 + a_3 + \ldots + a_{40} = 3^{10} \quad \text{(1)} \] \[ a_0 - a_1 + a_2 - a_3 + \ldots + a_{40} = 3^{10} \quad \text{(2)} \] 6. **Adding and Subtracting the Equations**: - Adding (1) and (2): \[ (a_0 + a_1 + a_2 + a_3 + \ldots + a_{40}) + (a_0 - a_1 + a_2 - a_3 + \ldots + a_{40}) = 3^{10} + 3^{10} \] This simplifies to: \[ 2a_0 + 2a_2 + 2a_4 + \ldots + 2a_{40} = 2 \cdot 3^{10} \] Dividing by 2 gives: \[ a_0 + a_2 + a_4 + \ldots + a_{40} = 3^{10} \] - Subtracting (2) from (1): \[ (a_0 + a_1 + a_2 + a_3 + \ldots + a_{40}) - (a_0 - a_1 + a_2 - a_3 + \ldots + a_{40}) = 3^{10} - 3^{10} \] This simplifies to: \[ 2a_1 + 2a_3 + 2a_5 + \ldots + 2a_{39} = 0 \] Dividing by 2 gives: \[ a_1 + a_3 + a_5 + \ldots + a_{39} = 0 \] 7. **Final Result**: Therefore, the sum of the coefficients of the odd powers of \(x\) is: \[ a_1 + a_3 + a_5 + \ldots + a_{39} = 0 \] ### Conclusion: The value of \(a_1 + a_3 + \ldots + a_{39}\) is \(0\).

To solve the problem, we need to find the sum of the coefficients of the odd powers of \(x\) in the expansion of \((1+x+x^2)^{10}(1-x+x^2)^{10}\). ### Step-by-step Solution: 1. **Understanding the Expression**: We start with the expression: \[ (1+x+x^2)^{10}(1-x+x^2)^{10} ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 28

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION-2)|5 Videos
  • JEE MAIN REVISION TEST - 4 JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If (1+x-2x^2)^(20)=a_0+a_1x+a_2x^2+a_3x^3+...+a_(40)x^(40), then find the value of a_1+a_3+a_5+...+a_(39)dot

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . .+a_(20)x^(20), then

If (1+x+x^2+x^3)^100=a_0+a_1x+a_2x^2+.......+a_300x^300, then

If (1 +x+x^2)^25 = a_0 + a_1x+ a_2x^2 +..... + a_50.x^50 then a_0 + a_2 + a_4 + ... + a_50 is :

If (1+x+x^2)^n=a_0+a_1x+a_2x^2+....+a_(2n)x^(2n) , then a_0+a_2+a_4+.....+a_(2n) is

If (1+x-2x^2)^(20)=a_0+a_1x+a_2x^2+a_3x^3++a_(40)x^(40), then find the value of a_1+a_3+a_5++a_(39)dot

If (x+10)^50+(x−10)^50=a_0+a_1 x+a_2x^2+........a_50x^2+...........+a_50x^50 then the value of a2/a0 is equal to (A) 12.25 (B) 12.75 (C) 11.75 (D) 11.25

If (1+x+x^2)^n = a_0+a_1x+a_2x_2 +..............+a_(2n)x^(2n) then the value of a_1+a_4+a_7+.........

If (1+2x +3x^2)^10 = a_0 +a_1x +a_2x^2 + ……+a_20x^20 then a_1 = ?

let f(x)=a_0+a_1x^2+a_2x^4+............a_nx^(2n) where 0< a_0 < a_1 < a_3 ............< a_n then f(x) has

VMC MODULES ENGLISH-JEE MAIN REVISION TEST - 29 (2020)-MATHEMATICS
  1. (~(pvvq))vv(~p^^q) is logically equivalent to

    Text Solution

    |

  2. if (1+x+x^2)^(10)(1-x+x^2)^(10)=a0+ax+a2x^2+a3x^3+...........+a(40)x^(...

    Text Solution

    |

  3. Find no. of ways to distribute all 5 different chocolates to 4 childre...

    Text Solution

    |

  4. The equation to the line touching both the parabolas y^2 =4x and x^2=...

    Text Solution

    |

  5. The length of projection, of the line segment joining the points (1, -...

    Text Solution

    |

  6. Matrix A such that A^(2)=2A-I, where I is the identity matrix, then fo...

    Text Solution

    |

  7. If Real ((2z-1)/(z+1))=1, then locus of z is , where z=x+iy and i=sqrt...

    Text Solution

    |

  8. Let A(3, 2) and B(6, 5) be two points and a point C (x,y) is chosen on...

    Text Solution

    |

  9. The equation of the circle, which touches the parabola y^2=4x at (1,2)...

    Text Solution

    |

  10. There are exactly two points on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 ...

    Text Solution

    |

  11. int(a^4)^(b^4)(f(sqrtx))/((sqrtx)[f(a^2+b^2-sqrtx)+f(sqrtx)])dx is equ...

    Text Solution

    |

  12. The area bounded by the curves x + y = 2 and y = x^2 above x-axis in ...

    Text Solution

    |

  13. Solution of (sin x)(dy)/(dx) = y ln y , given y ((pi)/2) = e

    Text Solution

    |

  14. If y^x=x^y then (dy)/(dx) at x=1, y=1 is

    Text Solution

    |

  15. f(x)=(x^2-1)|x^2-3x+2|+cos|x| is not differentiable at x=a, then sum(r...

    Text Solution

    |

  16. If veca = hati + hatj + hatk & vecb = hati - hatj + hatk are the side...

    Text Solution

    |

  17. lim(x->e) (lnx-1)/(x-e)

    Text Solution

    |

  18. if the system of linear equations {:(x+2ay+az=0),(x+3by+bz=0),(x+4c...

    Text Solution

    |

  19. Variance of 1st 10 natural nos. is m & mean of first 10 odd natural nu...

    Text Solution

    |

  20. Find the expected value of the experiment “tossing 3 coins simultaneou...

    Text Solution

    |