Home
Class 12
MATHS
If z = x + iy, x , y in R , th...

If ` z = x + iy, x , y in R ` , then the louts `Im (( z - 2 ) /(z + i)) = (1 ) /(2) ` represents : ( where ` i= sqrt ( - 1)) `

A

Straight line

B

Circle

C

Parabola

D

Hyperbola

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression given and find the imaginary part of the complex expression. Let's go through the steps systematically. ### Step-by-Step Solution: 1. **Define the complex number**: Let \( z = x + iy \), where \( x, y \in \mathbb{R} \). 2. **Set up the equation**: We need to find the imaginary part of the expression: \[ \text{Im} \left( \frac{z - 2}{z + i} \right) = \frac{1}{2} \] 3. **Substitute \( z \)**: Substitute \( z \) into the expression: \[ \frac{z - 2}{z + i} = \frac{(x + iy) - 2}{(x + iy) + i} = \frac{(x - 2) + iy}{x + (y + 1)i} \] 4. **Rationalize the denominator**: Multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{((x - 2) + iy)(x - (y + 1)i)}{(x + (y + 1)i)(x - (y + 1)i)} \] 5. **Calculate the denominator**: The denominator simplifies to: \[ x^2 + (y + 1)^2 \] 6. **Calculate the numerator**: The numerator expands as follows: \[ (x - 2)x - (x - 2)(y + 1)i + iyx - iy(y + 1)i \] Simplifying this gives: \[ (x^2 - 2x + y^2 + y + 1) + i(yx - (x - 2)(y + 1)) \] 7. **Extract the imaginary part**: The imaginary part of the expression is: \[ \frac{yx - (x - 2)(y + 1)}{x^2 + (y + 1)^2} \] 8. **Set the imaginary part equal to \( \frac{1}{2} \)**: \[ \frac{yx - (x - 2)(y + 1)}{x^2 + (y + 1)^2} = \frac{1}{2} \] 9. **Cross multiply**: \[ 2(yx - (x - 2)(y + 1)) = x^2 + (y + 1)^2 \] 10. **Expand and simplify**: Expanding both sides leads to: \[ 2yx - 2xy - 2y + 4 = x^2 + y^2 + 2y + 1 \] Rearranging gives: \[ x^2 + y^2 - 2y + 2x - 3 = 0 \] 11. **Identify the conic section**: The equation \( x^2 + y^2 + 2gx + 2fy + c = 0 \) represents a circle. Here, we can see that it is indeed a circle. ### Conclusion: The equation represents a circle.

To solve the problem, we need to analyze the expression given and find the imaginary part of the complex expression. Let's go through the steps systematically. ### Step-by-Step Solution: 1. **Define the complex number**: Let \( z = x + iy \), where \( x, y \in \mathbb{R} \). 2. **Set up the equation**: ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos
  • JEE MAIN REVISION TEST - 1 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos

Similar Questions

Explore conceptually related problems

If z=x+i y , then show that z bar z +2(z+ bar z )+a=0 , where a in R , represents a circle.

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)

If z=x+i y , then the equation |(2z-i)/(z+1)|=m does not represents a circle, when m is (a) 1/2 (b). 1 (c). 2 (d). 3

If z=x+iy, where i=sqrt(-1) , then the equation abs(((2z-i)/(z+1)))=m represents a circle, then m can be

If z=x+iy, AA x,y in R, i^(2)=-1, xy ne 0 and |z|=2 , then the imaginary part of (z+2)/(z-2) cannot be

if Im((z+2i)/(z+2))= 0 then z lies on the curve :

If z = x+iy is any complex number and |z-1| = |z+1| then show that |z| = y .

If z=x+iy is a complex number satisfying |z+i/2|^2=|z-i/2|^2 , then the locus of z is

The equation |z-i|=|x-1|, i=sqrt(-1) , represents :

VMC MODULES ENGLISH-JEE MAIN REVISION TEST - 30 | JEE -2020-MATHEMATICS
  1. Which one of the following statement is neither a tautology nor a fall...

    Text Solution

    |

  2. The area of the region enclosed by x ^ 2 + y ^ 2 = 2 , y ^ 2...

    Text Solution

    |

  3. If z = x + iy, x , y in R , then the louts Im (( z - 2 ) ...

    Text Solution

    |

  4. If the distance between foci of a hyperbola is twice the distance betw...

    Text Solution

    |

  5. Let alpha, beta be two real roots of the equation cot ^ 2...

    Text Solution

    |

  6. A biased coin with probability of getting head is twice that of tail, ...

    Text Solution

    |

  7. Let f ((x + 1) /(x - 1)) = 2x + 1 , then integral int f(x)\ dx is...

    Text Solution

    |

  8. Let P be a point on parabola x ^ 2 = 4y . If the distance of P...

    Text Solution

    |

  9. The value of ("lim")(xvec2)(2^x+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))i s ...

    Text Solution

    |

  10. If vector vec a = hati + hatj + hatk , vecb = 4 hati + 3 ...

    Text Solution

    |

  11. How many 7 digit numbers using all digits from 1, 1, 2, 2, 3, 3, 4, so...

    Text Solution

    |

  12. Let A (0,2 ) , B ( 3, 0 ) , C ( 6, 4 ) be the vertices of triangle ...

    Text Solution

    |

  13. Let f (x) = [x] and g (x ) =|x| , AA x in R then value of...

    Text Solution

    |

  14. Evaluate : int(0)^(1) cot^(-1) (1-x + x^(2))dx

    Text Solution

    |

  15. Which of the following is incorrect : BR> A. (pi) ^ (1// pi ) ...

    Text Solution

    |

  16. If x ^ 2 + y^ 2 + sin y = 4 , then the value of | ...

    Text Solution

    |

  17. Let ( 1 + x + x ^ 2 ) ^ 5 = a 0 + a 1 x + a 2 x ^ 2 ...

    Text Solution

    |

  18. The sum of first 50 term of the series 1 + (3 ) /(2) + (7...

    Text Solution

    |

  19. The standard deviation of first 50 even natural number is lamd...

    Text Solution

    |

  20. Let f(x)-|3-|2-|x-1|||, AA x epsilon R not differentiable at x(1),x(2)...

    Text Solution

    |