Home
Class 12
MATHS
If vector vec a = hati + hatj + ...

If vector ` vec a = hati + hatj + hatk , vecb = 4 hati + 3 hatj + 4 hatk ` and ` vec c = hati + alpha hatj + beta hatk ` are linearly dependent and ` | vec c | = sqrt3 ` , then value of ` | alpha | + | beta | ` is

A

2

B

3

C

1

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \(|\alpha|\) and \(|\beta|\) given that the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are linearly dependent and that \(|\vec{c}| = \sqrt{3}\). ### Step-by-Step Solution: 1. **Identify the vectors**: \[ \vec{a} = \hat{i} + \hat{j} + \hat{k}, \quad \vec{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}, \quad \vec{c} = \hat{i} + \alpha \hat{j} + \beta \hat{k} \] 2. **Condition for linear dependence**: The vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are linearly dependent if the determinant of the matrix formed by their coefficients is zero: \[ \begin{vmatrix} 1 & 1 & 1 \\ 4 & 3 & \alpha \\ 4 & 4 & \beta \end{vmatrix} = 0 \] 3. **Calculate the determinant**: Expanding the determinant: \[ 1 \cdot (3\beta - 4\alpha) - 1 \cdot (4\beta - 4) + 1 \cdot (4\alpha - 3) = 0 \] Simplifying this gives: \[ 3\beta - 4\alpha - 4\beta + 4 + 4\alpha - 3 = 0 \] Combining like terms: \[ (3\beta - 4\beta) + (-4\alpha + 4\alpha) + (4 - 3) = 0 \implies -\beta + 1 = 0 \] Thus, we find: \[ \beta = 1 \] 4. **Magnitude of vector \(\vec{c}\)**: We know that \(|\vec{c}| = \sqrt{3}\): \[ |\vec{c}| = \sqrt{1 + \alpha^2 + \beta^2} = \sqrt{3} \] Squaring both sides: \[ 1 + \alpha^2 + \beta^2 = 3 \] Substituting \(\beta = 1\): \[ 1 + \alpha^2 + 1^2 = 3 \implies 1 + \alpha^2 + 1 = 3 \implies \alpha^2 + 2 = 3 \] Thus: \[ \alpha^2 = 1 \implies \alpha = \pm 1 \] 5. **Calculate \(|\alpha| + |\beta|\)**: Now we have: \[ |\alpha| = 1 \quad \text{and} \quad |\beta| = 1 \] Therefore: \[ |\alpha| + |\beta| = 1 + 1 = 2 \] ### Final Answer: \[ |\alpha| + |\beta| = 2 \]

To solve the problem, we need to determine the values of \(|\alpha|\) and \(|\beta|\) given that the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are linearly dependent and that \(|\vec{c}| = \sqrt{3}\). ### Step-by-Step Solution: 1. **Identify the vectors**: \[ \vec{a} = \hat{i} + \hat{j} + \hat{k}, \quad \vec{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}, \quad \vec{c} = \hat{i} + \alpha \hat{j} + \beta \hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos
  • JEE MAIN REVISION TEST - 1 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos

Similar Questions

Explore conceptually related problems

find vecA xx vecB if vecA = hati - 2 hatj + 4 hatk and vecB = 3 hati - hatj + 2hatk

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

If veca=hati+hatj+hatk, vecb=4hati+3hatj+4hatk and vecc=hati+alphahatj+betahatk are linearly dependent vectors and |vecc|=sqrt(3) then:

If vec r = 3 hati + 2 hatj - 5 hatk , vec a= 2 hati - hatj + hatk, vec b = hati + 3 hatj - 2hatk and vec c=-2 hati + hatj - 3 hatk " such that " hat r = x vec a +y vec b + z vec c then

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If vec a =hati +3hatj , vecb = 2hati -hatj - hatk and vec c =mhati +7 hatj +3hatk are coplanar then find the value of m.

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -hatk , " then " vecb is (a) hati - hatj + hatk (b) 2hati - hatk (c) hati (d) 2hati

The angle between the line vecr = ( 5 hati - hatj - 4 hatk ) + lamda ( 2 hati - hatj + hatk) and the plane vec r.( 3 hati - 4 hatj - hatk) + 5=0 is

If two vectors are given as veca = hati - hatj + 2hatk and vecb = hati + 2hatj+hatk , the unit vector perpendicular to both vec a and vec b is

VMC MODULES ENGLISH-JEE MAIN REVISION TEST - 30 | JEE -2020-MATHEMATICS
  1. Which one of the following statement is neither a tautology nor a fall...

    Text Solution

    |

  2. The area of the region enclosed by x ^ 2 + y ^ 2 = 2 , y ^ 2...

    Text Solution

    |

  3. If z = x + iy, x , y in R , then the louts Im (( z - 2 ) ...

    Text Solution

    |

  4. If the distance between foci of a hyperbola is twice the distance betw...

    Text Solution

    |

  5. Let alpha, beta be two real roots of the equation cot ^ 2...

    Text Solution

    |

  6. A biased coin with probability of getting head is twice that of tail, ...

    Text Solution

    |

  7. Let f ((x + 1) /(x - 1)) = 2x + 1 , then integral int f(x)\ dx is...

    Text Solution

    |

  8. Let P be a point on parabola x ^ 2 = 4y . If the distance of P...

    Text Solution

    |

  9. The value of ("lim")(xvec2)(2^x+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))i s ...

    Text Solution

    |

  10. If vector vec a = hati + hatj + hatk , vecb = 4 hati + 3 ...

    Text Solution

    |

  11. How many 7 digit numbers using all digits from 1, 1, 2, 2, 3, 3, 4, so...

    Text Solution

    |

  12. Let A (0,2 ) , B ( 3, 0 ) , C ( 6, 4 ) be the vertices of triangle ...

    Text Solution

    |

  13. Let f (x) = [x] and g (x ) =|x| , AA x in R then value of...

    Text Solution

    |

  14. Evaluate : int(0)^(1) cot^(-1) (1-x + x^(2))dx

    Text Solution

    |

  15. Which of the following is incorrect : BR> A. (pi) ^ (1// pi ) ...

    Text Solution

    |

  16. If x ^ 2 + y^ 2 + sin y = 4 , then the value of | ...

    Text Solution

    |

  17. Let ( 1 + x + x ^ 2 ) ^ 5 = a 0 + a 1 x + a 2 x ^ 2 ...

    Text Solution

    |

  18. The sum of first 50 term of the series 1 + (3 ) /(2) + (7...

    Text Solution

    |

  19. The standard deviation of first 50 even natural number is lamd...

    Text Solution

    |

  20. Let f(x)-|3-|2-|x-1|||, AA x epsilon R not differentiable at x(1),x(2)...

    Text Solution

    |